Citation: Di Xu, Xiang-Xiang Zhao, Zhong-Tao Chen, Yu-Guo Ma. Synergistic Effect and Fluorination Effect in Ethylene Polymerization by Nickel Phenoxyiminato Catalysts[J]. Chinese Journal of Polymer Science, ;2018, 36(2): 244-251. doi: 10.1007/s10118-018-2081-3 shu

Synergistic Effect and Fluorination Effect in Ethylene Polymerization by Nickel Phenoxyiminato Catalysts

  • Corresponding author: Yu-Guo Ma, ygma@pku.edu.cn
  • Received Date: 30 September 2017
    Accepted Date: 30 October 2017
    Available Online: 24 November 2017

  • A series of binuclear nickel phenoxyiminato catalysts with different linkers and fluorine substituents were efficiently synthesized. Binuclear nickel catalysts with rigid linkers showed higher catalytic activity and thermal stability in ethylene polymerization and produced polymers with higher molecular weight possibly due to the larger steric hindrance and metal-metal synergistic effect. The introduction of fluorine atoms on the N-terphenyl moity also enhanced polymerization activity and molecular weight of polymer due to the electronic effect of fluorine atoms.
  • 加载中
    1. [1]

      Younkin T. R., Connor E. F., Henderson J. I., Friedrich S. K., Grubbs R. H., Bansleben D. A.. Neutral, single-component nickel(Ⅱ) polyolefin catalysts that tolerate heteroatoms[J]. Science, 2000,287(5452):460-462. doi: 10.1126/science.287.5452.460

    2. [2]

      Ittel S. D., Johnson L. K., Brookhart M.. Late-metal catalysts for ethylene homo-and copolymerization[J]. Chem. Rev., 2000,100(4):1169-1204. doi: 10.1021/cr9804644

    3. [3]

      Nakamura A., Ito S., Nozaki K.. Coordination-insertion copolymerization of fundamental polar monomers[J]. Chem. Rev., 2009,109(11):5215-5244. doi: 10.1021/cr900079r

    4. [4]

      Nakamura A., Anselment T. M. J., Claverie J., Goodall B., Jordan R. F., Mecking S., Rieger B., Sen A., van Leeuwen P. W. N. M., Nozaki K.. Ortho-phosphinobenzenesulfonate:a superb ligand for palladium-catalyzed coordination-insertion copolymerization of polar vinyl monomers[J]. Acc. Chem. Res., 2013,46(7):1438-1449. doi: 10.1021/ar300256h

    5. [5]

      Johnson L. K., Mecking S., Brookhart M.. Copolymerization of ethylene and propylene with functionalized vinyl monomers by palladium(Ⅱ) catalysts[J]. J. Am. Chem. Soc., 1996,118(1):267-268. doi: 10.1021/ja953247i

    6. [6]

      Mu H., Pan L., Song D., Li Y.. Neutral nickel catalysts for olefin homo-and copolymerization:Relationships between catalyst structures and catalytic properties[J]. Chem. Rev., 2015,115(22):12091-12137. doi: 10.1021/cr500370f

    7. [7]

      Guo L., Dai S., Sui X., Chen C.. Palladium and nickel catalyzed chain walking olefin polymerization and copolymerization[J]. ACS Catal., 2016,6(1):428-441. doi: 10.1021/acscatal.5b02426

    8. [8]

      Vaidya T., Klimovica K., LaPointe A. M., Keresztes I., Lobkovsky E. B., Daugulis O., Coates G. W.. Secondary alkene insertion and precision chain-walking:a new route to semicrystalline "polyethylene" from α-olefins by combining two rare catalytic events[J]. J. Am. Chem. Soc., 2014,136(20):7213-7216. doi: 10.1021/ja502130w

    9. [9]

      Cherian A. E., Rose J. M., Lobkovsky E. B., Coates G.W.. A C2-symmetric, living α-diimine Ni(Ⅱ) catalyst:regioblock copolymers from propylene[J]. J. Am. Chem. Soc., 2005,127(40):13770-13771. doi: 10.1021/ja0540021

    10. [10]

      McCord E. F., McLain S. J., Nelson L. T. J., Ittel S. D., Tempel D., Killian C. M., Johnson L. K., Brookhart M.. 13C-NMR analysis of α-olefin enchainment in poly(α-olefins) produced with nickel and palladium α-diimine catalysts[J]. Macromolecules, 2007,40(3):410-420. doi: 10.1021/ma061547m

    11. [11]

      Guo L., Chen C.. (α-diimine)palladium catalyzed ethylene polymerization and (co)polymerization with polar comonomers[J]. Sci. China Chem., 2015,58(11):1663-1673. doi: 10.1007/s11426-015-5433-7

    12. [12]

      Guan Z., Cotts P. M., McCord E. F., McLain S. J.. Chain walking:a new strategy to control polymer topology[J]. Science, 1999,283(5410):2059-2062. doi: 10.1126/science.283.5410.2059

    13. [13]

      Zuideveld M. A., Wehrmann P., Röhr C., Mecking S.. Remote substituents controlling catalytic polymerization by very active and robust neutral nickel(Ⅱ) complexes[J]. Angew. Chem. Int. Ed., 2004,43(7):869-873. doi: 10.1002/(ISSN)1521-3773

    14. [14]

      Mu H. L., Ye W. P., Song D. P., Li Y. S.. Highly active single-component neutral nickel ethylene polymerization catalysts:The influence of electronic effects and spectator ligands[J]. Organometallics, 2010,29(23):6282-6290. doi: 10.1021/om100658j

    15. [15]

      Hu X., Dai S., Chen C.. Ethylene polymerization by salicylaldimine nickel(Ⅱ) complexes containing a dibenzhydryl moiety[J]. Dalton Trans., 2016,45(4):1496-1503. doi: 10.1039/C5DT04408A

    16. [16]

      Rhinehart J. L., Brown L. A., Long B. K.. A robust Ni(Ⅱ) α-diimine catalyst for high temperature ethylene polymerization[J]. J. Am. Chem. Soc., 2013,135(44):16316-16319. doi: 10.1021/ja408905t

    17. [17]

      Dai S., Zhou S., Zhang W., Chen C.. Systematic investigations of ligand steric effects on α-diimine palladium catalyzed olefin polymerization and copolymerization[J]. Macromolecules, 2016,49(23):8855-8862. doi: 10.1021/acs.macromol.6b02104

    18. [18]

      Dai S., Chen C.. Direct synthesis of functionalized high-molecular-weight polyethylene by copolymerization of ethylene with polar monomers[J]. Angew. Chem. Int. Ed., 2016,55(42):13281-13285. doi: 10.1002/anie.201607152

    19. [19]

      Kenyon P., Mecking S.. Pentafluorosulfanyl substituents in polymerization catalysis[J]. J. Am. Chem. Soc., 2017,139(39):13786-13790. doi: 10.1021/jacs.7b06745

    20. [20]

      Chen M., Chen C.. Rational design of high-performance phosphine sulfonate nickel catalysts for ethylene polymerization and copolymerization with polar monomers[J]. ACS Catal., 2017,7(2):1308-1312. doi: 10.1021/acscatal.6b03394

    21. [21]

      Dai S., Sui X., Chen C.. Highly robust palladium(Ⅱ) α-diimine catalysts for slow-chain-walking polymerization of ethylene and copolymerization with methyl acrylate[J]. Angew. Chem. Int. Ed., 2015,54(34):9948-9953. doi: 10.1002/anie.201503708

    22. [22]

      Weberski M. P., Chen C., Delferro M., Zuccaccia C., Macchioni A., Marks T. J.. Suppression of β-hydride chain transfer in nickel(Ⅱ)-catalyzed ethylene polymerization via weak fluorocarbon ligand-product interactions[J]. Organometallics, 2012,31(9):3773-3789. doi: 10.1021/om3002735

    23. [23]

      Popeney C. S., Rheingold A. L., Guan Z.. Nickel(Ⅱ) and palladium(Ⅱ) polymerization catalysts bearing a fluorinated cyclophane ligand:stabilization of the reactive intermediate[J]. Organometallics, 2009,28(15):4452-4463. doi: 10.1021/om900302r

    24. [24]

      Wang J., Yao E., Chen Z., Ma Y.. Fluorinated nickel(Ⅱ) phenoxyiminato catalysts:exploring the role of fluorine atoms in controlling polyethylene productivities and microstructures[J]. Macromolecules, 2015,48(16):5504-5510. doi: 10.1021/acs.macromol.5b01090

    25. [25]

      Chen M., Yang B., Chen C.. Redox-controlled olefin (co)polymerization catalyzed by ferrocene-bridged phosphine-sulfonate palladium complexes[J]. Angew. Chem. Int. Ed., 2015,54(51):15520-15524. doi: 10.1002/anie.201507274

    26. [26]

      Zhao M., Chen C.. Accessing multiple catalytically active states in redox-controlled olefin polymerization[J]. ACS Catal., 2017,7(11):7490-7494. doi: 10.1021/acscatal.7b02564

    27. [27]

      Li M., Wang X., Luo Y., Chen C.. A second-coordination-sphere strategy to modulate nickel-and palladium-catalyzed olefin polymerization and copolymerization[J]. Angew. Chem. Int. Ed., 2017,56(38):11604-11609. doi: 10.1002/anie.v56.38

    28. [28]

      Zhang D., Chen C.. Influence of polyethylene glycol unit on palladium-and nickel-catalyzed ethylene polymerization and copolymerization[J]. Angew. Chem. Int. Ed., 2017. doi: 10.1002/anie.201708212

    29. [29]

      Stephenson C. J., McInnis J. P., Chen C., Weberski M. P., Motta A., Delferro M., Marks T. J.. Ni(Ⅱ) phenoxyiminato olefin polymerization catalysis:Striking coordinative modulation of hyperbranched polymer microstructure and stability by a proximate sulfonyl group[J]. ACS Catal., 2014,4(3):999-1003. doi: 10.1021/cs500114b

    30. [30]

      Xin B. S., Sato N., Tanna A., Oishi Y., Konishi Y., Shimizu F.. Nickel catalyzed copolymerization of ethylene and alkyl acrylates[J]. J. Am. Chem. Soc., 2017,139(10):3611-3614. doi: 10.1021/jacs.6b13051

    31. [31]

      McInnis J. P., Delferro M., Marks T. J.. Multinuclear group 4 catalysis:Olefin polymerization pathways modified by strong metal-metal cooperative effects[J]. Acc. Chem. Res., 2014,47(8):2545-2557. doi: 10.1021/ar5001633

    32. [32]

      Chen Z., Yao E., Wang J., Gong X., Ma Y.. Ethylene (co)polymerization by binuclear nickel phenoxyiminato catalysts with cofacial orientation[J]. Macromolecules, 2016,49(23):8848-8854. doi: 10.1021/acs.macromol.6b02078

    33. [33]

      Johnson L. K., Killian C. M., Brookhart M.. New Pd(Ⅱ)-and Ni(Ⅱ)-based catalysts for polymerization of ethylene and α-olefins[J]. J. Am. Chem. Soc., 1995,117(23):6414-6415. doi: 10.1021/ja00128a054

    34. [34]

      Popeney C., Guan Z.. Ligand electronic effects on late transition metal polymerization catalysts[J]. Organometallics, 2005,24(6):1145-1155. doi: 10.1021/om048988j

    35. [35]

      Popeney C. S., Guan Z.. Effect of ligand electronics on the stability and chain transfer rates of substituted Pd(Ⅱ) α-diimine catalysts[J]. Macromolecules, 2010,43(9):4091-4097. doi: 10.1021/ma100220n

    36. [36]

      Osichow A., Göttker-Schnetmann I., Mecking S.. Role of electron-withdrawing remote substituents in neutral nickel(Ⅱ) polymerization catalysts[J]. Organometallics, 2013,32(18):5239-5242. doi: 10.1021/om400757f

    37. [37]

      Göttker-Schnetmann I., Wehrmann P., Röhr C., Mecking S.. Substituent effects in (κ2-N, O)-salicylaldiminato nickel(Ⅱ)-methyl pyridine polymerization catalysts:terphenyls controlling polyethylene microstructures[J]. Organometallics, 2007,26(9):2348-2362. doi: 10.1021/om0611498

    38. [38]

      Bastero A., Göttker-Schnetmann I., Röhr C., Mecking S.. Polymer microstructure control in catalytic polymerization exclusively by electronic effects of remote substituents[J]. Adv. Synth. Catal., 2007,349(14-15):2307-2316. doi: 10.1002/(ISSN)1615-4169

    39. [39]

      Saito J., Mitani M., Mohri J., Yoshida Y., Matsui S., Ishii S., Kojoh S., Kashiwa N., Fujita T.. Living polymerization of ethylene with a titanium complex containing two phenoxy-imine chelate ligands[J]. Angew. Chem. Int. Ed., 2001,40(15):2918-2920. doi: 10.1002/(ISSN)1521-3773

    40. [40]

      Mitani M., Mohri J.-i., Yoshida Y., Saito J., Ishii S., Tsuru K., Matsui S., Furuyama R., Nakano T., Tanaka H., Kojoh S.-i., Matsugi T., Kashiwa N., Fujita T.. Living polymerization of ethylene catalyzed by titanium complexes having fluorine-containing phenoxy-imine chelate ligands[J]. J. Am. Chem. Soc., 2002,124(13):3327-3336. doi: 10.1021/ja0117581

    41. [41]

      Mitani M., Furuyama R., Mohri J.-i., Saito J., Ishii S., Terao H., Nakano T., Tanaka H., Fujita T.. Syndiospecific living propylene polymerization catalyzed by titanium complexes having fluorine-containing phenoxy-imine chelate ligands[J]. J. Am. Chem. Soc., 2003,125(14):4293-4305. doi: 10.1021/ja029560j

    42. [42]

      Ishii S.-i., Saito J., Mitani M., Mohri J.-i., Matsukawa N., Tohi Y., Matsui S., Kashiwa N., Fujita T.. Highly active ethylene polymerization catalysts based on titanium complexes having two phenoxy-imine chelate ligands[J]. J. Mol. Catal. A:Chem., 2002,179(1):11-16.  

    43. [43]

      Tian J., Hustad P. D., Coates G. W.. A new catalyst for highly syndiospecific living olefin polymerization:homopolymers and block copolymers from ethylene and propylene[J]. J. Am. Chem. Soc., 2001,123(21):5134-5135. doi: 10.1021/ja0157189

    44. [44]

      Makio H., Fujita T.. Development and application of FI catalysts for olefin polymerization:unique catalysis and distinctive polymer formation[J]. Acc. Chem. Res., 2009,42(10):1532-1544. doi: 10.1021/ar900030a

    45. [45]

      Delferro M., Marks T. J.. Multinuclear olefin polymerization catalysts[J]. Chem. Rev., 2011,111(3):2450-2485. doi: 10.1021/cr1003634

    46. [46]

      Motta A., Fragalà I. L., Marks T. J.. Proximity and cooperativity effects in binuclear d0 olefin polymerization catalysis. Theoretical analysis of structure and reaction mechanism[J]. J. Am. Chem. Soc., 2009,131(11):3974-3984.  

    47. [47]

      Sujith S., Joe D. J., Na S. J., Park Y. W., Choi C. H., Lee B. Y.. Ethylene/polar norbornene copolymerizations by bimetallic salicylaldimine-nickel catalysts[J]. Macromolecules, 2005,38(24):10027-10033. doi: 10.1021/ma051344i

    48. [48]

      Chen Q., Yu J., Huang J.. Arene-bridged salicylaldimine-based binuclear neutral nickel(Ⅱ) complexes:Synthesis and ethylene polymerization activities[J]. Organometallics, 2007,26(3):617-625. doi: 10.1021/om060778e

    49. [49]

      Radlauer M. R., Buckley A. K., Henling L. M., Agapie T.. Bimetallic coordination insertion polymerization of unprotected polar monomers:copolymerization of amino olefins and ethylene by dinickel bisphenoxyiminato catalysts[J]. J. Am. Chem. Soc., 2013,135(10):3784-3787. doi: 10.1021/ja4004816

    50. [50]

      Wang J., Li H., Guo N., Li L., Stern C. L., Marks T. J.. Covalently linked heterobimetallic catalysts for olefin polymerization[J]. Organometallics, 2004,23(22):5112-5114. doi: 10.1021/om049481b

    51. [51]

      Kuwabara J., Takeuchi D., Osakada K.. Zr/Zr and Zr/Fe dinuclear complexes with flexible bridging ligands. Preparation by olefin metathesis reaction of the mononuclear precursors and properties as polymerization catalysts[J]. Organometallics, 2005,24(11):2705-2712.

    52. [52]

      Cano Sierra J., Hüerländer D., Hill M., Kehr G., Erker G., Fröhlich R.. Formation of dinuclear titanium and zirconium complexes by olefin metathesis-catalytic preparation of organometallic catalyst systems[J]. Chem. Eur. J., 2003,9(15):3618-3622. doi: 10.1002/chem.200304789

    53. [53]

      Chen Z., Zhao X., Gong X., Xu D., Ma Y.. Macrocyclic trinuclear nickel phenoxyimine catalysts for high-temperature polymerization of ethylene and isospecific polymerization of propylene[J]. Macromolecules, 2017,50(17):6561-6568. doi: 10.1021/acs.macromol.7b00996

    54. [54]

      Wehrmann P., Mecking S.. Highly active binuclear neutral nickel(Ⅱ) catalysts affording high molecular weight polyethylene[J]. Organometallics, 2008,27(7):1399-1408. doi: 10.1021/om700942z

    55. [55]

      Takeuchi D., Chiba Y., Takano S., Osakada K.. Double-decker-type dinuclear nickel catalyst for olefin polymerization:efficient incorporation of functional co-monomers[J]. Angew. Chem. Int. Ed., 2013,52(48):12536-12540. doi: 10.1002/anie.201307741

    56. [56]

      Wang C., Friedrich S., Younkin T. R., Li R. T., Grubbs R. H., Bansleben D. A., Day M. W.. Neutral nickel(Ⅱ)-based catalysts for ethylene polymerization[J]. Organometallics, 1998,17(15):3149-3151. doi: 10.1021/om980176y

    57. [57]

      Connor E. F., Younkin T. R., Henderson J. I., Waltman A. W., Grubbs R. H.. Synthesis of neutral nickel catalysts for ethylene polymerization-the influence of ligand size on catalyst stability[J]. Chem. Commun., 2003,18:2272-2273.  

    58. [58]

      Delferro M., McInnis J. P., Marks T. J.. Ethylene polymerization characteristics of an electron-deficient nickel(Ⅱ) phenoxyiminato catalyst modulated by non-innocent intramolecular hydrogen bonding[J]. Organometallics, 2010,29(21):5040-5049. doi: 10.1021/om100251j

  • 加载中
    1. [1]

      Zimo Peng Quan Zhang Gaocan Qi Hao Zhang Qian Liu Guangzhi Hu Jun Luo Xijun Liu . Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting. Chinese Journal of Structural Chemistry, 2024, 43(1): 100191-100191. doi: 10.1016/j.cjsc.2023.100191

    2. [2]

      Fengrui YangDebing WangXinying ZhangJie ZhangZhichao WuQiaoying Wang . Synergistic effects of peroxydisulfate on UV/O3 process for tetracycline degradation: Mechanism and pathways. Chinese Chemical Letters, 2024, 35(10): 109599-. doi: 10.1016/j.cclet.2024.109599

    3. [3]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    4. [4]

      Ke GongJinghan LiaoJiangtao LinQuan WangZhihua WuLiting WangJiali ZhangYi DongYourong DuanJianhua Chen . Mitochondria-targeted nanoparticles overcome chemoresistance via downregulating BACH1/CD47 axis in ovarian carcinoma. Chinese Chemical Letters, 2024, 35(5): 108888-. doi: 10.1016/j.cclet.2023.108888

    5. [5]

      Liping ZhaoXixi GuoZhimeng ZhangXi LuQingxuan ZengTianyun FanXintong ZhangFenbei ChenMengyi XuMin YuanZhenjun LiJiandong JiangJing PangXuefu YouYanxiang WangDanqing Song . Novel berberine derivatives as adjuvants in the battle against Acinetobacter baumannii: A promising strategy for combating multi-drug resistance. Chinese Chemical Letters, 2024, 35(10): 109506-. doi: 10.1016/j.cclet.2024.109506

    6. [6]

      Xuejie GaoXinyang ChenMing JiangHanyan WuWenfeng RenXiaofei YangRuncang Sun . Long-lifespan thin Li anode achieved by dead Li rejuvenation and Li dendrite suppression for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109448-. doi: 10.1016/j.cclet.2023.109448

    7. [7]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    8. [8]

      Yufei Jia Fei Li Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255

    9. [9]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    10. [10]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    11. [11]

      Min FuPan HeSen ZhouWenqiang LiuBo MaShiying ShangYaohao LiRuihan WangZhongping Tan . An unexpected stereochemical effect of thio-substituted Asp in native chemical ligation. Chinese Chemical Letters, 2024, 35(8): 109434-. doi: 10.1016/j.cclet.2023.109434

    12. [12]

      Yixia ZhangCaili XueYunpeng ZhangQi ZhangKai ZhangYulin LiuZhaohui ShanWu QiuGang ChenNa LiHulin ZhangJiang ZhaoDa-Peng Yang . Cocktail effect of ionic patch driven by triboelectric nanogenerator for diabetic wound healing. Chinese Chemical Letters, 2024, 35(8): 109196-. doi: 10.1016/j.cclet.2023.109196

    13. [13]

      Yuan DongMutian MaZhenyang JiaoSheng HanLikun XiongZhao DengYang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049

    14. [14]

      Botao GaoHe QiHui LiuJun Chen . Role of polarization evolution in the hysteresis effect of Pb-based antiferroelecrtics. Chinese Chemical Letters, 2024, 35(4): 108598-. doi: 10.1016/j.cclet.2023.108598

    15. [15]

      Xin Huang Yi Zhao Wanzhen Liang . Vibronic coupling effect on intersystem crossing rates of TADF emitters. Chinese Journal of Structural Chemistry, 2024, 43(6): 100278-100278. doi: 10.1016/j.cjsc.2024.100278

    16. [16]

      Cunjun LiWencong LiuXianlei ChenLiang LiShenyu LanMingshan Zhu . Adsorption and activation of peroxymonosulfate on BiOCl for carbamazepine degradation: The role of piezoelectric effect. Chinese Chemical Letters, 2024, 35(10): 109652-. doi: 10.1016/j.cclet.2024.109652

    17. [17]

      Mingxin SongLijing XieFangyuan SuZonglin YiQuangui GuoCheng-Meng Chen . New insights into the effect of hard carbons microstructure on the diffusion of sodium ions into closed pores. Chinese Chemical Letters, 2024, 35(6): 109266-. doi: 10.1016/j.cclet.2023.109266

    18. [18]

      Chaochao WeiRu WangZhongkai WuQiyue LuoZiling JiangLiang MingJie YangLiping WangChuang Yu . Revealing the size effect of FeS2 on solid-state battery performances at different operating temperatures. Chinese Chemical Letters, 2024, 35(6): 108717-. doi: 10.1016/j.cclet.2023.108717

    19. [19]

      Chenlu HuangXinyu YangQingyu YuLinhua ZhangDunwan Zhu . Gas-generating polymersomes-based amplified photoimmunotherapy for abscopal effect and tumor metastasis inhibition. Chinese Chemical Letters, 2024, 35(6): 109680-. doi: 10.1016/j.cclet.2024.109680

    20. [20]

      Junchen PengXue YinDandan DongZhongyuan GuoQinqin WangMinmin LiuFei HeBin DaiChaofeng Huang . Promotion effect of epoxy group neighboring single-atom Cu site on acetylene hydrochlorination. Chinese Chemical Letters, 2024, 35(6): 109508-. doi: 10.1016/j.cclet.2024.109508

Metrics
  • PDF Downloads(0)
  • Abstract views(659)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return