Preparation of Porous Polylactide Microspheres and Their Application in Tissue Engineering
- Corresponding author: Zhi-Hua Gan, zhgan@mail.buct.edu.cn
Citation:
Xu-Dong Shi, Pei-Jian Sun, Zhi-Hua Gan. Preparation of Porous Polylactide Microspheres and Their Application in Tissue Engineering[J]. Chinese Journal of Polymer Science,
;2018, 36(6): 712-719.
doi:
10.1007/s10118-018-2079-x
Couvreur P., BlancoPrieto M. J., Puisieux F., Roques B., Fattal E.. Multiple emulsion technology for the design of microspheres containing peptides and oligopeptides[J]. Adv. Drug Deliv. Rev., 1997,28(1):85-96. doi: 10.1016/S0169-409X(97)00052-5
McGlohorn J. B., Grimes L. W., Webster S. S., Burg K. J. L.. Characterization of cellular carriers for use in injectable tissue-engineering composites[J]. J. Biomed. Mater. Res. Part A, 2003,66A(3):441-449. doi: 10.1002/(ISSN)1097-4636
Hong Y., Gao C. Y., Xie Y., Gong Y. H., Shen J. C.. Collagen-coated polylactide microspheres as chondrocyte microcarriers[J]. Biomaterials, 2005,26(32):6305-6313. doi: 10.1016/j.biomaterials.2005.03.038
Thissen H., Chang K. Y., Tebb T. A., Tsai W. B., Glattauer V., Ramshaw J. A. M., Werkmeister J. A.. Synthetic biodegradable microparticles for articular cartilage tissue engineering[J]. J. Biomed. Mater. Res. Part A, 2006,77A(3):590-598. doi: 10.1002/(ISSN)1552-4965
Liu X., Jin X., Ma P. X.. Nanofibrous hollow microspheres self-assembled from star-shaped polymers as injectable cell carriers for knee repair[J]. Nat. Mater., 2011,10(5):398-406. doi: 10.1038/nmat2999
Lee J. H., Lee C. S., Cho K. Y.. Enhanced cell adhesion to the dimpled surfaces of golf-ball-shaped microparticles[J]. ACS Appl. Mater. Interfaces, 2014,6(19):16493-16497. doi: 10.1021/am505997s
Kavas A., Keskin D., Altunbas K., Tezcaner A.. Raloxifene-/raloxifene-poly(ethylene glycol) conjugate-loaded microspheres:a novel strategy for drug delivery to bone forming cells[J]. Int. J. Pharm., 2016,510(1):168-183. doi: 10.1016/j.ijpharm.2016.06.053
Garkhal K., Verma S., Tikoo K., Kumar N.. Surface modified poly(L-lactide-co-epsilon-caprolactone) microspheres as scaffold for tissue engineering[J]. J. Biomed. Mater. Res. Part A, 2007,82A(3):747-756. doi: 10.1002/(ISSN)1552-4965
Lee S. H., Shin H.. Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering[J]. Adv. Drug Deliv. Rev., 2007,59(4-5):339-359. doi: 10.1016/j.addr.2007.03.016
Luciani A., Coccoli V., Orsi S., Ambrosio L., Netti P. A.. PCL microspheres based functional scaffolds by bottom-up approach with predefined microstructural properties and release profiles[J]. Biomaterials, 2008,29(36):4800-4807. doi: 10.1016/j.biomaterials.2008.09.007
Bae S. E., Choi D. H., Han D. K., Park K.. Effect of temporally controlled release of dexamethasone on in vivo chondrogenic differentiation of mesenchymal stromal cells[J]. J. Control. Release, 2010,143(1):23-30. doi: 10.1016/j.jconrel.2009.12.024
Le Ray A. M., Chiffoleau S., Iooss P., Grimandi G., Gouyette A., Daculsi G., Merle C.. Vancomycin encapsulation in biodegradable poly(ε-caprolactone) microparticles for bone implantation.Influence of the formulation process on size, drug loading, in vitro release and cytocompatibility[J]. Biomaterials, 2003,24(3):443-449. doi: 10.1016/S0142-9612(02)00357-5
Bae S. E., Son J. S., Park K., Han D. K.. Fabrication of covered porous PLGA microspheres using hydrogen peroxide for controlled drug delivery and regenerative medicine[J]. J. Control. Release, 2009,133(1):37-43. doi: 10.1016/j.jconrel.2008.09.006
Malda J., Frondoza C. G.. Microcarriers in the engineering of cartilage and bone[J]. Trends Biotechnol., 2006,24(7):299-304. doi: 10.1016/j.tibtech.2006.04.009
Crotts G., Park T. G.. Preparation of porous and nonporous biodegradable polymeric hollow microspheres[J]. J. Control. Release, 1995,35(2-3):91-105. doi: 10.1016/0168-3659(95)00010-6
Hong S. J., Yu H. S., Kim H. W.. Tissue engineering polymeric microcarriers with macroporous morphology and bone-bioactive surface[J]. Macromol. Biosci., 2009,9(7):639-645. doi: 10.1002/mabi.v9:7
Fan J. B., Song Y. Y., Wang S. T., Jiang L., Zhu M. Q., Guo X. L.. A synergy effect between the hydrophilic PEG and rapid solvent evaporation induced formation of tunable porous microspheres from a triblock copolymer[J]. RSC Adv., 2014,4(2):629-633. doi: 10.1039/C3RA44197K
Kim T. K., Yoon J. J., Lee D. S., Park T. G.. Gas foamed open porous biodegradable polymeric microspheres[J]. Biomaterials, 2006,27(2):152-159. doi: 10.1016/j.biomaterials.2005.05.081
Kang S. W., Yang H. S., Seo S. W., Han D. K., Kim B. S.. Apatite-coated poly(lactic-co-glycolic acid) microspheres as an injectable scaffold for bone tissue engineering[J]. J. Biomed. Mater. Res. Part A, 2008,85A(3):747-756. doi: 10.1002/(ISSN)1552-4965
Wu D., Wang C., Yang J., Wang H., Han H., Zhang A., Yang Y., Li Q.. Improving the intracellular drug concentration in lung cancer treatment through the codelivery of doxorubicin and mir-519c mediated by porous PLGA microparticle[J]. Mol. Pharm., 2016,13(11):3925-3933. doi: 10.1021/acs.molpharmaceut.6b00702
Iqbal M., Zafar N., Fessi H., Elaissari A.. Double emulsion solvent evaporation techniques used for drug encapsulation[J]. Int.J. Pharm., 2015,496(2):173-190. doi: 10.1016/j.ijpharm.2015.10.057
Shi X. D., Sun L., Jiang J., Zhang X. L., Ding W. J., Gan Z. H.. Biodegradable polymeric microcarriers with controllable porous structure for tissue engineering[J]. Macromol. Biosci., 2009,9(12):1211-1218. doi: 10.1002/mabi.v9:12
Shi X. D., Sun L., Gan Z. H.. Formation mechanism of solvent-induced porous PLA microspheres[J]. Acta Polymerica Sinica (in Chinese), 2011(8):866-873.
Wang S. Y., Shi X. D., Gan Z. H., Wang F.. Preparation of PLGA microspheres with different porous morphologies[J]. Chinese J. Polym. Sci., 2015,33(1):128-136. doi: 10.1007/s10118-014-1507-9
Odonnell P. B., McGinity J. W.. Preparation of microspheres by the solvent evaporation technique[J]. Adv. Drug Deliv. Rev., 1997,28(1):25-42. doi: 10.1016/S0169-409X(97)00049-5
Meng F. T., Ma G. H., Qiu W., Su Z. G.. W/O/W double emulsion technique using ethyl acetate as organic solvent:effects of its diffusion rate on the characteristics of microparticles[J]. J. Control. Release, 2003,91(3):407-416. doi: 10.1016/S0168-3659(03)00273-6
Zheng Y. H., Cheng Y. L., Chen J. J., Ding J. X., Li M. Q., Li C., Wang J.C., Chen X. S.. Injectable hydrogel-microsphere construct with sequential degradation for locally synergistic chemotherapy[J]. ACS Appl. Mater. Interfaces, 2017,9(4):3487-3496. doi: 10.1021/acsami.6b15245
Zhang J., Liu H., Ding J. X., Wu J., Zhuang X. L., Chen X. S., Wang J. C., Yin J. B., Li Z. M.. High-pressure compression-molded porous resorbable polymer/hydroxyapatite composite scaffold for cranial bone regeneration[J]. ACS Biomater. Sci. Eng., 2016,2(9):1471-1482. doi: 10.1021/acsbiomaterials.6b00202
Liu D. H., Ding J. X., Xu W. G., Song X. F., Zhuang X. L., Chen X. S.. Stereocomplex micelles based on 4-armed poly(ethylene glycol)-polylactide enantiomeric copolymers for drug delivery[J]. Acta Polymerica Sinica (in Chinese), 2014(9):1265-1273.
Shen K. X., Li D., Guan J. J., Ding J. X., Wang Z. T., Gu J. K., Liu T. J., Chen X. S.. Targeted sustained delivery of antineoplastic agent with multicomponent polylactide stereocomplex micelle[J]. Nanomed. Nanotechnol. Biol. Med., 2017,13(3):1279-1288. doi: 10.1016/j.nano.2016.12.022
Feng X. R., Ding J. X., Gref R., Chen X. S.. Poly(b-cyclodextrin)-mediated polylactide-cholesterol stereocomplex micelles for controlled drug delivery[J]. Chinese J. Polym. Sci., 2017,35(6):693-699. doi: 10.1007/s10118-017-1932-7
Wang J. X., Xu W. G., Ding J. X., Lu S. F., Wang X. Q., Wang C. X., Chen X. S.. Cholesterol-enhanced polylactide-based stereocomplex micelle for effective delivery of doxorubicin[J]. Materials, 2015,8(1):216-230. doi: 10.3390/ma8010216
Ho M. L., Fu Y. C., Wang G. J., Chen H. T., Chang J. K., Tsai T. H., Wang C. K.. Controlled release carrier of BSA made by W/O/W emulsion method containing PLGA and hydroxyapatite[J]. J. Control. Release, 2008,128(2):142-148. doi: 10.1016/j.jconrel.2008.02.012
Sturesson C., Carlfors J.. Incorporation of protein in PLG-microspheres with retention of bioactivity[J]. J. Control. Release, 2000,67(2-3):171-178. doi: 10.1016/S0168-3659(00)00205-4
Florence A. T., Whitehill D.. The formulation and stability of multiple emulsions[J]. Int. J. Pharm., 1982,11:277-308. doi: 10.1016/0378-5173(82)90080-1
Sah H. K., Smith M. S., Chern R. T.. A novel method of preparing PLGA microcapsules utilizing methylethyl ketone[J]. Pharm. Res., 1996,13(3):360-367. doi: 10.1023/A:1016080123176
Schugens C., Laruelle N., Nihant N., Grandfils C., Jerome R., Teyssie P.. Effect of the emulsion stability on the morphology and porosity of semicrystalline poly(L-lactide) microparticles prepared by W/O/W double emulsion-evaporation[J]. J. Control. Release, 1994,32(2):161-176. doi: 10.1016/0168-3659(94)90055-8
Rezwan K., Chen Q. Z., Blaker J. J., Boccaccini A. R.. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering[J]. Biomaterials, 2006,27(18):3413-3431. doi: 10.1016/j.biomaterials.2006.01.039
Bodmeier R., McGinity J.W.. Solvent selection in the preparation of poly(DL-lactide) microspheres prepared by the solvent evaporation method[J]. Int. J. Pharm., 1988,43(1-2):179-186. doi: 10.1016/0378-5173(88)90073-7
Kojima R., Yoshida T., Tasaki H., Umejima H., Maeda M., Higashi Y., Watanabe S., Oku N.. Release mechanisms of tacrolimus-loaded PLGA and PLA microspheres and immunosuppressive effects of the microspheres in a rat heart transplantation model[J]. Int. J. Pharm., 2015,492(1-2):20-27. doi: 10.1016/j.ijpharm.2015.07.004
Wei G. B., Pettway G. J., McCauley L. K., Ma P. X.. The release profiles and bioactivity of parathyroid hormone from poly(lactic-co-glycolic acid) microspheres[J]. Biomaterials, 2004,25(2):345-352. doi: 10.1016/S0142-9612(03)00528-3
Jones K. H., Senft J. A.. An improved method to determine cell viability by simultaneous staining with fluorescein diacetate propidium iodide[J]. J. Histochem. Cytochem., 1985,33(1):77-79. doi: 10.1177/33.1.2578146
Webb K., Hlady V., Tresco P. A.. Relative importance of surface wettability and charged functional groups on NIH 3T3 fibroblast attachment, spreading, and cytoskeletal organization[J]. J. Biomed. Mater. Res., 1998,41(3):422-430. doi: 10.1002/(ISSN)1097-4636
Kim H. K., Chung H. J., Park T. G.. Biodegradable polymeric microspheres with "open/closed" pores for sustained release of human growth hormone[J]. J. Control. Release, 2006,112(2):167-174. doi: 10.1016/j.jconrel.2006.02.004
Lee J., Lee K. Y.. Injectable microsphere/hydrogel combination systems for localized protein delivery[J]. Macromol. Biosci., 2009,9(7):671-676. doi: 10.1002/mabi.v9:7
Zhang Y., Sun L., Jiang J. A., Zhang X. L., Ding W. J., Gan Z. H.. Biodegradation-induced surface change of polymer microspheres and its influence on cell growth[J]. Polym. Degrad. Stab., 2010,95(8):1356-1364. doi: 10.1016/j.polymdegradstab.2010.01.025
Fereshte Hassanzadeh-Afruzi , Mina Azizi , Iman Zare , Ehsan Nazarzadeh Zare , Anwarul Hasan , Siavash Iravani , Pooyan Makvandi , Yi Xu . Advanced metal-organic frameworks-polymer platforms for accelerated dermal wound healing. Chinese Chemical Letters, 2024, 35(11): 109564-. doi: 10.1016/j.cclet.2024.109564
Zheyi Li , Xiaoyang Liang , Zitong Qiu , Zimeng Liu , Siyu Wang , Yue Zhou , Nan Li . Ion-interferential cell cycle arrest for melanoma treatment based on magnetocaloric bimetallic-ion sustained release hydrogel. Chinese Chemical Letters, 2024, 35(11): 109592-. doi: 10.1016/j.cclet.2024.109592
Jiechen Liu , Xiaoguang Li , Ruiyang Xia , Yuqi Wang , Fenghe Zhang , Yongzhi Pang , Qing Li . Efficient suppression of oral squamous cell carcinoma through spatial dimension conversion drug delivery systems-enabled immunomodulatory-photodynamic therapy. Chinese Chemical Letters, 2024, 35(12): 109619-. doi: 10.1016/j.cclet.2024.109619
Zhefei Hu , Jingwen Liao , Jiawen Zhou , Lulu Zhao , Yanjuan Liu , Yuefei Zhang , Wei Chen , Sheng Tang . A new green approach to synthesizing MIP-202@porous silica microspheres for positional isomer/enantiomer/hydrophilic separation. Chinese Chemical Letters, 2025, 36(1): 109985-. doi: 10.1016/j.cclet.2024.109985
Yunan Yuan , Zhimin Luo , Jie Chen , Chaoliang He , Kai Hao , Huayu Tian . Constructing thermoresponsive PNIPAM-based microcarriers for cell culture and enzyme-free cell harvesting. Chinese Chemical Letters, 2024, 35(7): 109549-. doi: 10.1016/j.cclet.2024.109549
Weiyu Chen , Zenghui Li , Chenguang Zhao , Lisha Zha , Junfeng Shi , Dan Yuan . Enzyme-modulate conformational changes in amphiphile peptide for selectively cell delivery. Chinese Chemical Letters, 2024, 35(12): 109628-. doi: 10.1016/j.cclet.2024.109628
Shihong Wu , Ronghui Zhou , Hang Zhao , Peng Wu . Sonoafterglow luminescence for in vivo deep-tissue imaging. Chinese Chemical Letters, 2024, 35(10): 110026-. doi: 10.1016/j.cclet.2024.110026
Yu-Qi Cao , Ying-Jie Lu , Li Zhang , Jing Zhang , Yin-Long Guo . Vacuum promoted on-tissue derivatization strategy: Unravelling spatial distribution of glycerides on tissue. Chinese Chemical Letters, 2024, 35(12): 109788-. doi: 10.1016/j.cclet.2024.109788
Kun-Heng Li , Hong-Yang Zhao , Dan-Dan Wang , Ming-Hui Qi , Zi-Jian Xu , Jia-Mi Li , Zhi-Li Zhang , Shi-Wen Huang . Mitochondria-targeted nano-AIEgens as a powerful inducer for evoking immunogenic cell death. Chinese Chemical Letters, 2024, 35(5): 108882-. doi: 10.1016/j.cclet.2023.108882
Yang Liu , Yan Liu , Kaiyin Yang , Zhiruo Zhang , Wenbo Zhang , Bingyou Yang , Hua Li , Lixia Chen . A selective HK2 degrader suppresses SW480 cancer cell growth by degrading HK2. Chinese Chemical Letters, 2024, 35(8): 109264-. doi: 10.1016/j.cclet.2023.109264
Boran Cheng , Lei Cao , Chen Li , Fang-Yi Huo , Qian-Fang Meng , Ganglin Tong , Xuan Wu , Lin-Lin Bu , Lang Rao , Shubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969
Jing Chen , Peisi Xie , Pengfei Wu , Yu He , Zian Lin , Zongwei Cai . MALDI coupled with laser-postionization and trapped ion mobility spectrometry contribute to the enhanced detection of lipids in cancer cell spheroids. Chinese Chemical Letters, 2024, 35(4): 108895-. doi: 10.1016/j.cclet.2023.108895
Yanjing Li , Jiayin Li , Yuqi Chang , Yunfeng Lin , Lei Sui . Tetrahedral framework nucleic acids promote the proliferation and differentiation potential of diabetic bone marrow mesenchymal stem cell. Chinese Chemical Letters, 2024, 35(9): 109414-. doi: 10.1016/j.cclet.2023.109414
Zhixue Liu , Haiqi Chen , Lijuan Guo , Xinyao Sun , Zhi-Yuan Zhang , Junyi Chen , Ming Dong , Chunju Li . Luminescent terphen[3]arene sulfate-activated FRET assemblies for cell imaging. Chinese Chemical Letters, 2024, 35(9): 109666-. doi: 10.1016/j.cclet.2024.109666
Ying Gao , Rong Zhou , Qiwen Wang , Shaolong Qi , Yuanyuan Lv , Shuang Liu , Jie Shen , Guocan Yu . Natural killer cell membrane doped supramolecular nanoplatform with immuno-modulatory functions for immuno-enhanced tumor phototherapy. Chinese Chemical Letters, 2024, 35(10): 109521-. doi: 10.1016/j.cclet.2024.109521
Yuanzheng Wang , Chen Zhang , Shuyan Han , Xiaoli Kong , Changyun Quan , Jun Wu , Wei Zhang . Cancer cell membrane camouflaged biomimetic gelatin-based nanogel for tumor inhibition. Chinese Chemical Letters, 2024, 35(11): 109578-. doi: 10.1016/j.cclet.2024.109578
Qian Ren , Xue Dai , Ran Cen , Yang Luo , Mingyang Li , Ziyun Zhang , Qinghong Bai , Zhu Tao , Xin Xiao . A cucurbit[8]uril-based supramolecular phosphorescent assembly: Cell imaging and sensing of amino acids in aqueous solution. Chinese Chemical Letters, 2024, 35(12): 110022-. doi: 10.1016/j.cclet.2024.110022
Zhi Li , Shuya Pan , Yuan Tian , Shaowei Liu , Weifeng Wei , Jinlin Wang , Tianfeng Chen , Ling Wang . Selenium nanoparticles enhance the chemotherapeutic efficacy of pemetrexed against non-small cell lung cancer. Chinese Chemical Letters, 2024, 35(12): 110018-. doi: 10.1016/j.cclet.2024.110018
Yanfei Liu , Yaqin Hu , Yifu Tan , Qiwen Chen , Zhenbao Liu . Tumor acidic microenvironment activatable DNA nanostructure for precise cancer cell targeting and inhibition. Chinese Chemical Letters, 2025, 36(1): 110289-. doi: 10.1016/j.cclet.2024.110289
Lixian Fu , Yiyun Tan , Yue Ding , Weixia Qing , Yong Wang . Water–soluble and polarity–sensitive near–infrared fluorescent probe for long–time specific cancer cell membranes imaging and C. Elegans label. Chinese Chemical Letters, 2024, 35(4): 108886-. doi: 10.1016/j.cclet.2023.108886