Citation: Xu-Dong Shi, Pei-Jian Sun, Zhi-Hua Gan. Preparation of Porous Polylactide Microspheres and Their Application in Tissue Engineering[J]. Chinese Journal of Polymer Science, ;2018, 36(6): 712-719. doi: 10.1007/s10118-018-2079-x shu

Preparation of Porous Polylactide Microspheres and Their Application in Tissue Engineering

  • Corresponding author: Zhi-Hua Gan, zhgan@mail.buct.edu.cn
  • Received Date: 2 September 2017
    Accepted Date: 26 October 2017
    Available Online: 19 January 2018

  • In this study, porous polylactide (PLA) microspheres with different structures were prepared through the multiple emulsion solvent evaporation method. By changing organic solvents (ethyl acetate and chloroform) and adding effervescent salt NH4HCO3 in the inner water phase, microspheres with porous capsular, matrix, microcapsular and multivesicular structures were prepared. The protein encapsulation and release, and the cell growth behavior of porous microspheres were further explored. Under the same inner water phase, microspheres prepared with chloroform had higher protein encapsulation efficiency and less protein release rate as compared with those prepared with ethyl acetate. Cell experiments showed that the relatively rough surface of microspheres prepared with chloroform was more favorable for the cell growth in comparison with the smooth surface of microspheres prepared with ethyl acetate. This study shows a simple and effective method to control the protein release and cell growth behaviors of polymer microspheres by tuning their porous structure.
  • 加载中
    1. [1]

      Couvreur P., BlancoPrieto M. J., Puisieux F., Roques B., Fattal E.. Multiple emulsion technology for the design of microspheres containing peptides and oligopeptides[J]. Adv. Drug Deliv. Rev., 1997,28(1):85-96. doi: 10.1016/S0169-409X(97)00052-5

    2. [2]

      McGlohorn J. B., Grimes L. W., Webster S. S., Burg K. J. L.. Characterization of cellular carriers for use in injectable tissue-engineering composites[J]. J. Biomed. Mater. Res. Part A, 2003,66A(3):441-449. doi: 10.1002/(ISSN)1097-4636

    3. [3]

      Hong Y., Gao C. Y., Xie Y., Gong Y. H., Shen J. C.. Collagen-coated polylactide microspheres as chondrocyte microcarriers[J]. Biomaterials, 2005,26(32):6305-6313. doi: 10.1016/j.biomaterials.2005.03.038

    4. [4]

      Thissen H., Chang K. Y., Tebb T. A., Tsai W. B., Glattauer V., Ramshaw J. A. M., Werkmeister J. A.. Synthetic biodegradable microparticles for articular cartilage tissue engineering[J]. J. Biomed. Mater. Res. Part A, 2006,77A(3):590-598. doi: 10.1002/(ISSN)1552-4965

    5. [5]

      Liu X., Jin X., Ma P. X.. Nanofibrous hollow microspheres self-assembled from star-shaped polymers as injectable cell carriers for knee repair[J]. Nat. Mater., 2011,10(5):398-406. doi: 10.1038/nmat2999

    6. [6]

      Lee J. H., Lee C. S., Cho K. Y.. Enhanced cell adhesion to the dimpled surfaces of golf-ball-shaped microparticles[J]. ACS Appl. Mater. Interfaces, 2014,6(19):16493-16497. doi: 10.1021/am505997s

    7. [7]

      Kavas A., Keskin D., Altunbas K., Tezcaner A.. Raloxifene-/raloxifene-poly(ethylene glycol) conjugate-loaded microspheres:a novel strategy for drug delivery to bone forming cells[J]. Int. J. Pharm., 2016,510(1):168-183. doi: 10.1016/j.ijpharm.2016.06.053

    8. [8]

      Garkhal K., Verma S., Tikoo K., Kumar N.. Surface modified poly(L-lactide-co-epsilon-caprolactone) microspheres as scaffold for tissue engineering[J]. J. Biomed. Mater. Res. Part A, 2007,82A(3):747-756. doi: 10.1002/(ISSN)1552-4965

    9. [9]

      Lee S. H., Shin H.. Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering[J]. Adv. Drug Deliv. Rev., 2007,59(4-5):339-359. doi: 10.1016/j.addr.2007.03.016

    10. [10]

      Luciani A., Coccoli V., Orsi S., Ambrosio L., Netti P. A.. PCL microspheres based functional scaffolds by bottom-up approach with predefined microstructural properties and release profiles[J]. Biomaterials, 2008,29(36):4800-4807. doi: 10.1016/j.biomaterials.2008.09.007

    11. [11]

      Bae S. E., Choi D. H., Han D. K., Park K.. Effect of temporally controlled release of dexamethasone on in vivo chondrogenic differentiation of mesenchymal stromal cells[J]. J. Control. Release, 2010,143(1):23-30. doi: 10.1016/j.jconrel.2009.12.024

    12. [12]

      Le Ray A. M., Chiffoleau S., Iooss P., Grimandi G., Gouyette A., Daculsi G., Merle C.. Vancomycin encapsulation in biodegradable poly(ε-caprolactone) microparticles for bone implantation.Influence of the formulation process on size, drug loading, in vitro release and cytocompatibility[J]. Biomaterials, 2003,24(3):443-449. doi: 10.1016/S0142-9612(02)00357-5

    13. [13]

      Bae S. E., Son J. S., Park K., Han D. K.. Fabrication of covered porous PLGA microspheres using hydrogen peroxide for controlled drug delivery and regenerative medicine[J]. J. Control. Release, 2009,133(1):37-43. doi: 10.1016/j.jconrel.2008.09.006

    14. [14]

      Malda J., Frondoza C. G.. Microcarriers in the engineering of cartilage and bone[J]. Trends Biotechnol., 2006,24(7):299-304. doi: 10.1016/j.tibtech.2006.04.009

    15. [15]

      Crotts G., Park T. G.. Preparation of porous and nonporous biodegradable polymeric hollow microspheres[J]. J. Control. Release, 1995,35(2-3):91-105. doi: 10.1016/0168-3659(95)00010-6

    16. [16]

      Hong S. J., Yu H. S., Kim H. W.. Tissue engineering polymeric microcarriers with macroporous morphology and bone-bioactive surface[J]. Macromol. Biosci., 2009,9(7):639-645. doi: 10.1002/mabi.v9:7

    17. [17]

      Fan J. B., Song Y. Y., Wang S. T., Jiang L., Zhu M. Q., Guo X. L.. A synergy effect between the hydrophilic PEG and rapid solvent evaporation induced formation of tunable porous microspheres from a triblock copolymer[J]. RSC Adv., 2014,4(2):629-633. doi: 10.1039/C3RA44197K

    18. [18]

      Kim T. K., Yoon J. J., Lee D. S., Park T. G.. Gas foamed open porous biodegradable polymeric microspheres[J]. Biomaterials, 2006,27(2):152-159. doi: 10.1016/j.biomaterials.2005.05.081

    19. [19]

      Kang S. W., Yang H. S., Seo S. W., Han D. K., Kim B. S.. Apatite-coated poly(lactic-co-glycolic acid) microspheres as an injectable scaffold for bone tissue engineering[J]. J. Biomed. Mater. Res. Part A, 2008,85A(3):747-756. doi: 10.1002/(ISSN)1552-4965

    20. [20]

      Wu D., Wang C., Yang J., Wang H., Han H., Zhang A., Yang Y., Li Q.. Improving the intracellular drug concentration in lung cancer treatment through the codelivery of doxorubicin and mir-519c mediated by porous PLGA microparticle[J]. Mol. Pharm., 2016,13(11):3925-3933. doi: 10.1021/acs.molpharmaceut.6b00702

    21. [21]

      Iqbal M., Zafar N., Fessi H., Elaissari A.. Double emulsion solvent evaporation techniques used for drug encapsulation[J]. Int.J. Pharm., 2015,496(2):173-190. doi: 10.1016/j.ijpharm.2015.10.057

    22. [22]

      Shi X. D., Sun L., Jiang J., Zhang X. L., Ding W. J., Gan Z. H.. Biodegradable polymeric microcarriers with controllable porous structure for tissue engineering[J]. Macromol. Biosci., 2009,9(12):1211-1218. doi: 10.1002/mabi.v9:12

    23. [23]

      Shi X. D., Sun L., Gan Z. H.. Formation mechanism of solvent-induced porous PLA microspheres[J]. Acta Polymerica Sinica (in Chinese), 2011(8):866-873.  

    24. [24]

      Wang S. Y., Shi X. D., Gan Z. H., Wang F.. Preparation of PLGA microspheres with different porous morphologies[J]. Chinese J. Polym. Sci., 2015,33(1):128-136. doi: 10.1007/s10118-014-1507-9

    25. [25]

      Odonnell P. B., McGinity J. W.. Preparation of microspheres by the solvent evaporation technique[J]. Adv. Drug Deliv. Rev., 1997,28(1):25-42. doi: 10.1016/S0169-409X(97)00049-5

    26. [26]

      Meng F. T., Ma G. H., Qiu W., Su Z. G.. W/O/W double emulsion technique using ethyl acetate as organic solvent:effects of its diffusion rate on the characteristics of microparticles[J]. J. Control. Release, 2003,91(3):407-416. doi: 10.1016/S0168-3659(03)00273-6

    27. [27]

      Zheng Y. H., Cheng Y. L., Chen J. J., Ding J. X., Li M. Q., Li C., Wang J.C., Chen X. S.. Injectable hydrogel-microsphere construct with sequential degradation for locally synergistic chemotherapy[J]. ACS Appl. Mater. Interfaces, 2017,9(4):3487-3496. doi: 10.1021/acsami.6b15245

    28. [28]

      Zhang J., Liu H., Ding J. X., Wu J., Zhuang X. L., Chen X. S., Wang J. C., Yin J. B., Li Z. M.. High-pressure compression-molded porous resorbable polymer/hydroxyapatite composite scaffold for cranial bone regeneration[J]. ACS Biomater. Sci. Eng., 2016,2(9):1471-1482. doi: 10.1021/acsbiomaterials.6b00202

    29. [29]

      Liu D. H., Ding J. X., Xu W. G., Song X. F., Zhuang X. L., Chen X. S.. Stereocomplex micelles based on 4-armed poly(ethylene glycol)-polylactide enantiomeric copolymers for drug delivery[J]. Acta Polymerica Sinica (in Chinese), 2014(9):1265-1273.  

    30. [30]

      Shen K. X., Li D., Guan J. J., Ding J. X., Wang Z. T., Gu J. K., Liu T. J., Chen X. S.. Targeted sustained delivery of antineoplastic agent with multicomponent polylactide stereocomplex micelle[J]. Nanomed. Nanotechnol. Biol. Med., 2017,13(3):1279-1288. doi: 10.1016/j.nano.2016.12.022

    31. [31]

      Feng X. R., Ding J. X., Gref R., Chen X. S.. Poly(b-cyclodextrin)-mediated polylactide-cholesterol stereocomplex micelles for controlled drug delivery[J]. Chinese J. Polym. Sci., 2017,35(6):693-699. doi: 10.1007/s10118-017-1932-7

    32. [32]

      Wang J. X., Xu W. G., Ding J. X., Lu S. F., Wang X. Q., Wang C. X., Chen X. S.. Cholesterol-enhanced polylactide-based stereocomplex micelle for effective delivery of doxorubicin[J]. Materials, 2015,8(1):216-230. doi: 10.3390/ma8010216

    33. [33]

      Ho M. L., Fu Y. C., Wang G. J., Chen H. T., Chang J. K., Tsai T. H., Wang C. K.. Controlled release carrier of BSA made by W/O/W emulsion method containing PLGA and hydroxyapatite[J]. J. Control. Release, 2008,128(2):142-148. doi: 10.1016/j.jconrel.2008.02.012

    34. [34]

      Sturesson C., Carlfors J.. Incorporation of protein in PLG-microspheres with retention of bioactivity[J]. J. Control. Release, 2000,67(2-3):171-178. doi: 10.1016/S0168-3659(00)00205-4

    35. [35]

      Florence A. T., Whitehill D.. The formulation and stability of multiple emulsions[J]. Int. J. Pharm., 1982,11:277-308. doi: 10.1016/0378-5173(82)90080-1

    36. [36]

      Sah H. K., Smith M. S., Chern R. T.. A novel method of preparing PLGA microcapsules utilizing methylethyl ketone[J]. Pharm. Res., 1996,13(3):360-367. doi: 10.1023/A:1016080123176

    37. [37]

      Schugens C., Laruelle N., Nihant N., Grandfils C., Jerome R., Teyssie P.. Effect of the emulsion stability on the morphology and porosity of semicrystalline poly(L-lactide) microparticles prepared by W/O/W double emulsion-evaporation[J]. J. Control. Release, 1994,32(2):161-176. doi: 10.1016/0168-3659(94)90055-8

    38. [38]

      Rezwan K., Chen Q. Z., Blaker J. J., Boccaccini A. R.. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering[J]. Biomaterials, 2006,27(18):3413-3431. doi: 10.1016/j.biomaterials.2006.01.039

    39. [39]

      Bodmeier R., McGinity J.W.. Solvent selection in the preparation of poly(DL-lactide) microspheres prepared by the solvent evaporation method[J]. Int. J. Pharm., 1988,43(1-2):179-186. doi: 10.1016/0378-5173(88)90073-7

    40. [40]

      Kojima R., Yoshida T., Tasaki H., Umejima H., Maeda M., Higashi Y., Watanabe S., Oku N.. Release mechanisms of tacrolimus-loaded PLGA and PLA microspheres and immunosuppressive effects of the microspheres in a rat heart transplantation model[J]. Int. J. Pharm., 2015,492(1-2):20-27. doi: 10.1016/j.ijpharm.2015.07.004

    41. [41]

      Wei G. B., Pettway G. J., McCauley L. K., Ma P. X.. The release profiles and bioactivity of parathyroid hormone from poly(lactic-co-glycolic acid) microspheres[J]. Biomaterials, 2004,25(2):345-352. doi: 10.1016/S0142-9612(03)00528-3

    42. [42]

      Jones K. H., Senft J. A.. An improved method to determine cell viability by simultaneous staining with fluorescein diacetate propidium iodide[J]. J. Histochem. Cytochem., 1985,33(1):77-79. doi: 10.1177/33.1.2578146

    43. [43]

      Webb K., Hlady V., Tresco P. A.. Relative importance of surface wettability and charged functional groups on NIH 3T3 fibroblast attachment, spreading, and cytoskeletal organization[J]. J. Biomed. Mater. Res., 1998,41(3):422-430. doi: 10.1002/(ISSN)1097-4636

    44. [44]

      Kim H. K., Chung H. J., Park T. G.. Biodegradable polymeric microspheres with "open/closed" pores for sustained release of human growth hormone[J]. J. Control. Release, 2006,112(2):167-174. doi: 10.1016/j.jconrel.2006.02.004

    45. [45]

      Lee J., Lee K. Y.. Injectable microsphere/hydrogel combination systems for localized protein delivery[J]. Macromol. Biosci., 2009,9(7):671-676. doi: 10.1002/mabi.v9:7

    46. [46]

      Zhang Y., Sun L., Jiang J. A., Zhang X. L., Ding W. J., Gan Z. H.. Biodegradation-induced surface change of polymer microspheres and its influence on cell growth[J]. Polym. Degrad. Stab., 2010,95(8):1356-1364. doi: 10.1016/j.polymdegradstab.2010.01.025

  • 加载中
    1. [1]

      Fereshte Hassanzadeh-AfruziMina AziziIman ZareEhsan Nazarzadeh ZareAnwarul HasanSiavash IravaniPooyan MakvandiYi Xu . Advanced metal-organic frameworks-polymer platforms for accelerated dermal wound healing. Chinese Chemical Letters, 2024, 35(11): 109564-. doi: 10.1016/j.cclet.2024.109564

    2. [2]

      Zheyi LiXiaoyang LiangZitong QiuZimeng LiuSiyu WangYue ZhouNan Li . Ion-interferential cell cycle arrest for melanoma treatment based on magnetocaloric bimetallic-ion sustained release hydrogel. Chinese Chemical Letters, 2024, 35(11): 109592-. doi: 10.1016/j.cclet.2024.109592

    3. [3]

      Jiechen LiuXiaoguang LiRuiyang XiaYuqi WangFenghe ZhangYongzhi PangQing Li . Efficient suppression of oral squamous cell carcinoma through spatial dimension conversion drug delivery systems-enabled immunomodulatory-photodynamic therapy. Chinese Chemical Letters, 2024, 35(12): 109619-. doi: 10.1016/j.cclet.2024.109619

    4. [4]

      Zhefei HuJingwen LiaoJiawen ZhouLulu ZhaoYanjuan LiuYuefei ZhangWei ChenSheng Tang . A new green approach to synthesizing MIP-202@porous silica microspheres for positional isomer/enantiomer/hydrophilic separation. Chinese Chemical Letters, 2025, 36(1): 109985-. doi: 10.1016/j.cclet.2024.109985

    5. [5]

      Yunan YuanZhimin LuoJie ChenChaoliang HeKai HaoHuayu Tian . Constructing thermoresponsive PNIPAM-based microcarriers for cell culture and enzyme-free cell harvesting. Chinese Chemical Letters, 2024, 35(7): 109549-. doi: 10.1016/j.cclet.2024.109549

    6. [6]

      Weiyu ChenZenghui LiChenguang ZhaoLisha ZhaJunfeng ShiDan Yuan . Enzyme-modulate conformational changes in amphiphile peptide for selectively cell delivery. Chinese Chemical Letters, 2024, 35(12): 109628-. doi: 10.1016/j.cclet.2024.109628

    7. [7]

      Shihong WuRonghui ZhouHang ZhaoPeng Wu . Sonoafterglow luminescence for in vivo deep-tissue imaging. Chinese Chemical Letters, 2024, 35(10): 110026-. doi: 10.1016/j.cclet.2024.110026

    8. [8]

      Yu-Qi CaoYing-Jie LuLi ZhangJing ZhangYin-Long Guo . Vacuum promoted on-tissue derivatization strategy: Unravelling spatial distribution of glycerides on tissue. Chinese Chemical Letters, 2024, 35(12): 109788-. doi: 10.1016/j.cclet.2024.109788

    9. [9]

      Kun-Heng LiHong-Yang ZhaoDan-Dan WangMing-Hui QiZi-Jian XuJia-Mi LiZhi-Li ZhangShi-Wen Huang . Mitochondria-targeted nano-AIEgens as a powerful inducer for evoking immunogenic cell death. Chinese Chemical Letters, 2024, 35(5): 108882-. doi: 10.1016/j.cclet.2023.108882

    10. [10]

      Yang LiuYan LiuKaiyin YangZhiruo ZhangWenbo ZhangBingyou YangHua LiLixia Chen . A selective HK2 degrader suppresses SW480 cancer cell growth by degrading HK2. Chinese Chemical Letters, 2024, 35(8): 109264-. doi: 10.1016/j.cclet.2023.109264

    11. [11]

      Boran ChengLei CaoChen LiFang-Yi HuoQian-Fang MengGanglin TongXuan WuLin-Lin BuLang RaoShubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969

    12. [12]

      Jing ChenPeisi XiePengfei WuYu HeZian LinZongwei Cai . MALDI coupled with laser-postionization and trapped ion mobility spectrometry contribute to the enhanced detection of lipids in cancer cell spheroids. Chinese Chemical Letters, 2024, 35(4): 108895-. doi: 10.1016/j.cclet.2023.108895

    13. [13]

      Yanjing LiJiayin LiYuqi ChangYunfeng LinLei Sui . Tetrahedral framework nucleic acids promote the proliferation and differentiation potential of diabetic bone marrow mesenchymal stem cell. Chinese Chemical Letters, 2024, 35(9): 109414-. doi: 10.1016/j.cclet.2023.109414

    14. [14]

      Zhixue LiuHaiqi ChenLijuan GuoXinyao SunZhi-Yuan ZhangJunyi ChenMing DongChunju Li . Luminescent terphen[3]arene sulfate-activated FRET assemblies for cell imaging. Chinese Chemical Letters, 2024, 35(9): 109666-. doi: 10.1016/j.cclet.2024.109666

    15. [15]

      Ying GaoRong ZhouQiwen WangShaolong QiYuanyuan LvShuang LiuJie ShenGuocan Yu . Natural killer cell membrane doped supramolecular nanoplatform with immuno-modulatory functions for immuno-enhanced tumor phototherapy. Chinese Chemical Letters, 2024, 35(10): 109521-. doi: 10.1016/j.cclet.2024.109521

    16. [16]

      Yuanzheng WangChen ZhangShuyan HanXiaoli KongChangyun QuanJun WuWei Zhang . Cancer cell membrane camouflaged biomimetic gelatin-based nanogel for tumor inhibition. Chinese Chemical Letters, 2024, 35(11): 109578-. doi: 10.1016/j.cclet.2024.109578

    17. [17]

      Qian RenXue DaiRan CenYang LuoMingyang LiZiyun ZhangQinghong BaiZhu TaoXin Xiao . A cucurbit[8]uril-based supramolecular phosphorescent assembly: Cell imaging and sensing of amino acids in aqueous solution. Chinese Chemical Letters, 2024, 35(12): 110022-. doi: 10.1016/j.cclet.2024.110022

    18. [18]

      Zhi LiShuya PanYuan TianShaowei LiuWeifeng WeiJinlin WangTianfeng ChenLing Wang . Selenium nanoparticles enhance the chemotherapeutic efficacy of pemetrexed against non-small cell lung cancer. Chinese Chemical Letters, 2024, 35(12): 110018-. doi: 10.1016/j.cclet.2024.110018

    19. [19]

      Yanfei LiuYaqin HuYifu TanQiwen ChenZhenbao Liu . Tumor acidic microenvironment activatable DNA nanostructure for precise cancer cell targeting and inhibition. Chinese Chemical Letters, 2025, 36(1): 110289-. doi: 10.1016/j.cclet.2024.110289

    20. [20]

      Lixian FuYiyun TanYue DingWeixia QingYong Wang . Water–soluble and polarity–sensitive near–infrared fluorescent probe for long–time specific cancer cell membranes imaging and C. Elegans label. Chinese Chemical Letters, 2024, 35(4): 108886-. doi: 10.1016/j.cclet.2023.108886

Metrics
  • PDF Downloads(0)
  • Abstract views(741)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return