Citation: Hui Liu, Xiao-Nan Kan, Chen-Yu Wu, Qing-Yan Pan, Zhi-Bo Li, Ying-Jie Zhao. Synthetic Two-dimensional Organic Structures[J]. Chinese Journal of Polymer Science, ;2018, 36(4): 425-444. doi: 10.1007/s10118-018-2070-6 shu

Synthetic Two-dimensional Organic Structures

  • Corresponding author: Zhi-Bo Li, zbli@qust.edu.cn Ying-Jie Zhao, yz@qust.edu.cn
  • Received Date: 26 April 2018
    Accepted Date: 21 October 2017
    Available Online: 20 December 2017

  • Synthetic two-dimensional (2D) polymers have totally different topology structures compared with traditional linear or branched polymers. The peculiar 2D structures bring superior properties. Although, from linear to 2D polymers, the study of these new materials is still in its infancy, they already show potential applications especially in optoelectronics, membranes, energy storage and catalysis, etc. In this review, we summarize the recent progress of the 2D materials from three respects:(1) Chemistry-different types of polymerization reactions or supramolecular assembly to construct the 2D networks were described; (2) Preparation methods-surface science, crystal engineering approaches and solution synthesis were introduced; (3) Functionalization and some early applications.
  • 加载中
    1. [1]

      Boott C. E., Nazemi A., Manners I.. Synthetic covalent and non-covalent 2D materials[J]. Angew. Chem. Int. Ed., 2015,54(47):13876-13894. doi: 10.1002/anie.201502009

    2. [2]

      Baek K., Hwang I., Roy I., Shetty D., Kim K.. Self-assembly of nanostructured materials through irreversible covalent bond formation[J]. Acc. Chem. Res., 2015,48(8):2221-2229. doi: 10.1021/acs.accounts.5b00067

    3. [3]

      Zhuang X., Mai Y., Wu D., Zhang F., Feng X.. Two-dimensional soft nanomaterials:a fascinating world of materials[J]. Adv. Mater., 2015,27(3):403-427. doi: 10.1002/adma.v27.3

    4. [4]

      Xiang Z., Cao D., Dai L.. Well-defined two dimensional covalent organic polymers:rational design, controlled syntheses, and potential applications[J]. Polym. Chem., 2015,6(11):1896-1911. doi: 10.1039/C4PY01383B

    5. [5]

      Payamyar P., King B. T., Ottinger H. C., Schluter A. D.. Two-dimensional polymers:concepts and perspectives[J]. Chem. Commun., 2016,52(1):18-34. doi: 10.1039/C5CC07381B

    6. [6]

      Rodriguez-San-Miguel D., Amo-Ochoa P., Zamora F.. MasterChem:cooking 2D-polymers[J]. Chem. Commun., 2016,52(22):4113-4127. doi: 10.1039/C5CC10283A

    7. [7]

      Cai S. L., Zhang W. G., Zuckermann R. N., Li Z. T., Zhao X., Liu Y.. The organicflatland-recent advances in synthetic 2D organic layers[J]. Adv. Mater., 2015,27(38):5762-5770. doi: 10.1002/adma.v27.38

    8. [8]

      Lackinger M.. On-surface polymerization-a versatile synthetic route to two-dimensional polymers[J]. Polym. Int., 2015,64(9):1073-1078. doi: 10.1002/pi.2015.64.issue-9

    9. [9]

      Chen T., Wang D., Wan L. J.. Two-dimensional chiral molecular assembly on solid surfaces:formation and regulation[J]. Natl. Sci. Rev., 2015,2(2):205-216. doi: 10.1093/nsr/nwv012

    10. [10]

      Colson J. W., Dichtel W. R.. Rationally synthesized two-dimensional polymers[J]. Nat. Chem., 2013,5:453-465. doi: 10.1038/nchem.1628

    11. [11]

      Zang Y., Aoki T., Teraguchi M., Kaneko T., Ma L., Jia H.. Two-dimensional and related polymers:concepts, synthesis, and their potential application as separation membrane materials[J]. Polym. Rev., 2015,55(1):57-89. doi: 10.1080/15583724.2014.963235

    12. [12]

      Novoselov K. S.. Electric field effect in atomically thin carbon films[J]. Science, 2004,306:666-669. doi: 10.1126/science.1102896

    13. [13]

      Staudinger H.. Über Polymerisation[J]. Berichte der deutschen chemischen gesellschaft (a and b series), 1920,53(6):1073-1085. doi: 10.1002/cber.19200530627

    14. [14]

      Sakamoto J., van Heijst J., Lukin O., Schlüter A. D.. Two-dimensional polymers:just a dream of synthetic chemists? Angew[J]. Chem. Int. Ed., 2009,48:1030-1069. doi: 10.1002/anie.v48:6

    15. [15]

      Jin Y., Yu C., Denman R. J., Zhang W.. Recent advances in dynamic covalent chemistry[J]. Chem. Soc. Rev., 2013,42(16):6634-6654. doi: 10.1039/c3cs60044k

    16. [16]

      Rowan S. J., Cantrill S. J., Cousins G. R. L., Sanders J. K. M., Stoddart J. F.. Dynamic covalent chemistry[J]. Angew. Chem. Int. Ed., 2002,41(6):898-952. doi: 10.1002/1521-3773(20020315)41:6<>1.0.CO;2-R

    17. [17]

      de Feyter S., de Schryver F. C.. Two-dimensional supramolecular self-assembly probed by scanning tunneling microscopy[J]. Chem. Soc. Rev., 2003,32(3):139-150. doi: 10.1039/b206566p

    18. [18]

      Elemans J. A., Lei S., de Feyter S.. Molecular and supramolecular networks on surfaces:from two-dimensional crystal engineering to reactivity[J]. Angew. Chem. Int. Ed., 2009,48(40):7298-332. doi: 10.1002/anie.v48:40

    19. [19]

      Michl J., Magnera T. F.. Two-dimensional supramolecular chemistry with molecular tinkertoys[J]. Proc. Nat. Acad. Sci., 2002,99:4788-4792. doi: 10.1073/pnas.052016299

    20. [20]

      Pawin G., Wong K. L., Kwon K. Y., Bartels L.. A homomolecular porous network at a Cu(111) surface[J]. Science, 2006,313(5789):961-962. doi: 10.1126/science.1129309

    21. [21]

      Theobald J. A., Oxtoby N. S., Phillips M. A., Champness N. R., Beton P. H.. Controlling molecular deposition and layer structure with supramolecular surface assemblies[J]. Nature, 2003,424(6952):1029-1031. doi: 10.1038/nature01915

    22. [22]

      Sirtl T., Schlögl S., Rastgoo-Lahrood A., Jelic J., Neogi S., Schmittel M., Heckl W. M., Reuter K., Lackinger M.. Control of intermolecular bonds by deposition rates at room temperature:hydrogen bonds versus metal coordination in trinitrile monolayers[J]. J. Am. Chem. Soc., 2013,135(2):691-695. doi: 10.1021/ja306834a

    23. [23]

      Blunt M. O., Russell J. C., Giménez-López M. D. C., Garrahan J. P., Lin X., Schröder M., Champness N. R., Beton P. H.. Random tiling and topological defects in a two-dimensional molecular network[J]. Science, 2008,322(5904):1077-1081. doi: 10.1126/science.1163338

    24. [24]

      Shi Z., Lin N.. Porphyrin-based two-dimensional coordination kagome lattice self-assembled on a Au(111) surface[J]. J. Am. Chem. Soc., 2009,131(15):5376-5377. doi: 10.1021/ja900499b

    25. [25]

      Kuhne D., Klappenberger F., Decker R., Schlickum U., Brune H., Klyatskaya S., Ruben M., Barth J. V.. High-quality 2D metal-organic coordination network providing giant cavities within mesoscale domains[J]. J. Am. Chem. Soc., 2009,131(11):3881-3883. doi: 10.1021/ja809946z

    26. [26]

      Liu J., Lin T., Shi Z., Xia F., Dong L., Liu P. N., Lin N.. Structural transformation of two-dimensional metal-organic coordination networks driven by intrinsic in-plane compression[J]. J. Am. Chem. Soc., 2011,133(46):18760-18766. doi: 10.1021/ja2056193

    27. [27]

      Shi Z., Liu J., Lin T., Xia F., Liu P. N., Lin N.. Thermodynamics and selectivity of two-dimensional metallo-supramolecular self-assembly resolved at molecular scale[J]. J. Am. Chem. Soc., 2011,133(16):6150-6153. doi: 10.1021/ja2010434

    28. [28]

      Shi Z., Lin N.. Structural and chemical control in assembly of multicomponent metal-organic coordination networks on a surface[J]. J. Am. Chem. Soc., 2010,132(31):10756-10761. doi: 10.1021/ja1018578

    29. [29]

      Adisoejoso J., Li Y., Liu J., Liu P. N., Lin N.. Two-dimensional metallo-supramolecular polymerization:toward size-controlled multi-strand polymers[J]. J. Am. Chem. Soc., 2012,134(45):18526-18529. doi: 10.1021/ja308480x

    30. [30]

      Walch H., Dienstmaier J., Eder G., Gutzler R., Schlögl S., Sirtl T., Das K., Schmittel M., Lackinger M.. Extended two-dimensional metal-organic frameworks based on thiolate-copper coordination bonds[J]. J. Am. Chem. Soc., 2011,133(20):7909-7915. doi: 10.1021/ja200661s

    31. [31]

      Schlickum U., Decker R., Klappenberger F., Zoppellaro G., Klyatskaya S., Ruben M., Silanes I., Arnau A., Kern K., Brune H., Barth J. V.. Metal-organic honeycomb nanomeshes with tunable cavity size[J]. Nano lett., 2007,7(12):3813-3817. doi: 10.1021/nl072466m

    32. [32]

      Kley C. S., Cechal J., Kumagai T., Schramm F., Ruben M., Stepanow S., Kern K.. Highly adaptable two-dimensional metal-organic coordination networks on metal surfaces[J]. J. Am. Chem. Soc., 2012,134(14):6072-6075. doi: 10.1021/ja211749b

    33. [33]

      Lei S., Tahara K., de Schryver F. C., van der Auweraer M., Tobe Y., de Feyter S.. One building block, two different supramolecular surface-confined patterns:concentration in control at the solid-liquid interface[J]. Angew. Chem. Int. Ed., 2008,47(16):2964-2968. doi: 10.1002/(ISSN)1521-3773

    34. [34]

      Furukawa S., Uji-i H., Tahara K., Ichikawa T., Sonoda M., de Schryver F. C., Tobe Y., De Feyter S.. Molecular geometry directed kagomé and honeycomb networks:toward two-dimensional crystal engineering[J]. J. Am. Chem. Soc., 2006,128(11):3502-3503. doi: 10.1021/ja0583362

    35. [35]

      Berner S., de Wild M., Ramoino L., Ivan S., Baratoff A., Güntherodt H. J., Suzuki H., Schlettwein D., Jung T. A.. Adsorption and two-dimensional phases of a large polar molecule:sub-phthalocyanine on Ag (111)[J]. Phys. Rev. B, 2003,68(11)115410. doi: 10.1103/PhysRevB.68.115410

    36. [36]

      Kley C. S.. Highly adaptable two-dimensional metal-organic coordination networks on metal surfaces[J]. J. Am. Chem. Soc., 2012,134:6072-6075. doi: 10.1021/ja211749b

    37. [37]

      Zwaneveld N. A. A., Pawlak R., Abel M., Catalin D., Gigmes D., Bertin D., Porte L.. Organized formation of 2D extended covalent organic frameworks at surfaces[J]. J. Am. Chem. Soc., 2008,130(21):6678-6679. doi: 10.1021/ja800906f

    38. [38]

      Dienstmaier J. F., Medina D. D., Dogru M., Knochel P., Bein T., Heckl W. M., Lackinger M.. Isoreticular two-dimensional covalent organic frameworks synthesized by on-surface condensation of diboronic acids[J]. ACS Nano, 2012,6(8):7234-7242. doi: 10.1021/nn302363d

    39. [39]

      Lafferentz L.. Controlling on-surface polymerization by hierarchical and substrate-directed growth[J]. Nat. Chem., 2012,4:215-220. doi: 10.1038/nchem.1242

    40. [40]

      Bieri M., Treier M., Cai J., Ait-Mansour K., Ruffieux P., Groning O., Groning P., Kastler M., Rieger R., Feng X., Mullen K., Fasel R.. Porous graphenes:two-dimensional polymer synthesis with atomic precision[J]. Chem. Commun., 2009,45:6919-6921.  

    41. [41]

      Blunt M. O., Russell J. C., Champness N. R., Beton P. H.. Templating molecular adsorption using a covalent organic framework[J]. Chem. Commun., 2010,46(38):7157-7159. doi: 10.1039/c0cc01810d

    42. [42]

      Bieri M., Nguyen M. T., Gröning O., Cai J., Treier M., Aït-Mansour K., Ruffieux P., Pignedoli C. A., Passerone D., Kastler M., Müllen K., Fasel R.. Two-dimensional polymer formation on surfaces:insight into the roles of precursor mobility and reactivity[J]. J. Am. Chem. Soc., 2010,132(46):16669-16676. doi: 10.1021/ja107947z

    43. [43]

      Gutzler R., Walch H., Eder G., Kloft S., Heckl W. M., Lackinger M.. Surface mediated synthesis of 2D covalent organic frameworks:1, 3, 5-tris(4-bromophenyl)benzene on graphite(001), Cu(111), and Ag(110)[J]. Chem. Commun., 2009,29:4456-4458.  

    44. [44]

      Cardenas L., Gutzler R., Lipton-Duffin J., Fu C., Brusso J. L., Dinca L. E., Vondracek M., Fagot-Revurat Y., Malterre D., Rosei F., Perepichka D. F.. Synthesis and electronic structure of a two dimensional[small pi]-conjugated polythiophene[J]. Chem. Sci., 2013,4(8):3263-3268. doi: 10.1039/c3sc50800e

    45. [45]

      Weigelt S., Busse C., Bombis C., Knudsen M. M., Gothelf K. V., Strunskus T., Wöll C., Dahlbom M., Hammer B., Lægsgaard E., Besenbacher F., Linderoth T. R.. Covalent interlinking of an aldehyde and an amine on a Au(111) surface in ultrahigh vacuum[J]. Angew. Chem. Int. Ed., 2007,46(48):9227-9230. doi: 10.1002/(ISSN)1521-3773

    46. [46]

      Weigelt S., Busse C., Bombis C., Knudsen M. M., Gothelf K. V., Lægsgaard E., Besenbacher F., Linderoth T. R.. Surface synthesis of 2D branched polymer nanostructures[J]. Angew. Chem. Int. Ed., 2008,47(23):4406-4410. doi: 10.1002/(ISSN)1521-3773

    47. [47]

      Marele A. C., Mas-Balleste R., Terracciano L., Rodriguez-Fernandez J., Berlanga I., Alexandre S. S., Otero R., Gallego J. M., Zamora F., Gomez-Rodriguez J. M.. Formation of a surface covalent organic framework based on polyester condensation[J]. Chem. Commun., 2012,48(54):6779-6781. doi: 10.1039/c2cc32270f

    48. [48]

      Schmitz C. H., Ikonomov J., Sokolowski M.. Two-dimensional polyamide networks with a broad pore size distribution on the Ag(111) surface[J]. J. Phys. Chem. C, 2011,115(15):7270-7278. doi: 10.1021/jp111723k

    49. [49]

      Treier M., Richardson N. V., Fasel R.. Fabrication of surface-supported low-dimensional polyimide networks[J]. J. Am. Chem. Soc., 2008,130(43):14054-14055. doi: 10.1021/ja805342n

    50. [50]

      Treier M., Fasel R., Champness N. R., Argent S., Richardson N. V.. Molecular imaging of polyimide formation[J]. Phys. Chem. Chem. Phys., 2009,11(8):1209-1214. doi: 10.1039/b815544p

    51. [51]

      Zhang Y. Q., Kepčija N., Kleinschrodt M., Diller K., Fischer S., Papageorgiou A. C., Allegretti F., Björk J., Klyatskaya S., Klappenberger F., Ruben M., Barth J. V.. Homo-coupling of terminal alkynes on a noble metal surface[J]. Nat. Commun., 2012,3. doi: 10.1038/ncomms2291

    52. [52]

      Gao H. Y., Wagner H., Zhong D., Franke J. H., Studer A., Fuchs H.. Glaser coupling at metal surfaces[J]. Angew. Chem. Int. Ed., 2013,52(14):4024-4028. doi: 10.1002/anie.v52.14

    53. [53]

      Eichhorn J., Heckl W. M., Lackinger M.. On-surface polymerization of 1, 4-diethynylbenzene on Cu(111)[J]. Chem. Commun., 2013,49(28):2900-2902. doi: 10.1039/c3cc40444g

    54. [54]

      Díaz Arado O., Mönig H., Wagner H., Franke J. H., Langewisch G., Held P. A., Studer A., Fuchs H.. On-surface azide-alkyne cycloaddition on Au(111)[J]. ACS Nano, 2013,7(10):8509-8515. doi: 10.1021/nn4022789

    55. [55]

      Schlogl S., Sirtl T., Eichhorn J., Heckl W. M., Lackinger M.. Synthesis of two-dimensional phenylene-boroxine networks through in vacuo condensation and on-surface radical addition[J]. Chem. Commun., 2011,47(45):12355-12357. doi: 10.1039/c1cc13896k

    56. [56]

      Côté A. P., Benin A. I., Ockwig N. W., Keeffe M., Matzger A. J., Yaghi O.M.. Porous, crystalline, covalent organic frameworks[J]. Science, 2005,310(5751)1166. doi: 10.1126/science.1120411

    57. [57]

      Ding S. Y., Wang W.. Covalent organic frameworks (COFs):from design to applications[J]. Chem. Soc. Rev., 2013,42(2):548-568. doi: 10.1039/C2CS35072F

    58. [58]

      Feng X., Ding X., Jiang D.. Covalent organic frameworks[J]. Chem. Soc. Rev., 2012,41(18):6010-6022. doi: 10.1039/c2cs35157a

    59. [59]

      Jin Y., Hu Y., Zhang W.. Tessellated multiporous two-dimensional covalent organic frameworks[J]. Nat. Rev. Chem., 20171. doi: 10.1038/s41570-017-0056

    60. [60]

      Bunck D. N., Dichtel W. R.. Bulk synthesis of exfoliated two-dimensional polymers using hydrazone-linked covalent organic frameworks[J]. J. Am. Chem. Soc., 2013,135:14952-14955. doi: 10.1021/ja408243n

    61. [61]

      Berlanga I., Mas-Ballesté R., Zamora F.. Tuning delamination of layered covalent organic frameworks through structural design[J]. Chem. Commun., 2012,48:7976-7978. doi: 10.1039/c2cc32187d

    62. [62]

      Chandra S., Kandambeth S., Biswal B. P., Lukose B., Kunjir S. M., Chaudhary M., Babarao R., Heine T., Banerjee R.. Chemically stable multilayered covalent organic nanosheets from covalent organic frameworks via mechanical delamination[J]. J. Am. Chem. Soc., 2013,135(47):17853-17861. doi: 10.1021/ja408121p

    63. [63]

      Yang S., Bruller S., Wu Z. S., Liu Z., Parvez K., Dong R., Richard F., Samori P., Feng X., Mullen K.. Organic radical-assisted electrochemical exfoliation for the scalable production of high-quality graphene[J]. J. Am. Chem. Soc., 2015,137(43):13927-13932. doi: 10.1021/jacs.5b09000

    64. [64]

      Zeng Z., Yin Z., Huang X., Li H., He Q., Lu G., Boey F., Zhang H.. Single-layer semiconducting nanosheets:high-yield preparation and device fabrication[J]. Angew. Chem. Int. Ed., 2011,50(47):11093-7. doi: 10.1002/anie.v50.47

    65. [65]

      Berlanga I., Ruiz-González M. L., González-Calbet J. M., Fierro J. L. G., Mas-Ballesté R., Zamora F.. Delamination of layered covalent organic frameworks[J]. Small, 2011,7:1207-1211. doi: 10.1002/smll.v7.9

    66. [66]

      Colson J. W., Mann J. A., DeBlase C. R., Dichtel W. R.. Patterned growth of oriented 2D covalent organic framework thin films on single-layer graphene[J]. J. Polym. Sci., Part A:Polym. Chem., 2015,53(2):378-384. doi: 10.1002/pola.27399

    67. [67]

      Colson J. W., Woll A. R., Mukherjee A., Levendorf M. P., Spitler E. L., Shields V. B., Spencer M. G., Park J., Dichtel W. R.. Oriented 2D covalent organic framework thin films on single-layer graphene[J]. Science, 2011,332(6026):228-231. doi: 10.1126/science.1202747

    68. [68]

      Tanoue R., Higuchi R., Enoki N., Miyasato Y., Uemura S., Kimizuka N., Stieg A. Z., Gimzewski J. K., Kunitake M.. Thermodynamically controlled self-assembly of covalent nanoarchitectures in aqueous solution[J]. ACS Nano, 2011,5(5):3923-3929. doi: 10.1021/nn200393q

    69. [69]

      Xu L., Zhou X., Yu Y., Tian W. Q., Ma J., Lei S.. Surface-confined crystalline two-dimensional covalent organic frameworks via on-surface Schiff-base coupling[J]. ACS Nano, 2013,7(9):8066-8073. doi: 10.1021/nn403328h

    70. [70]

      Xu L., Zhou X., Tian W. Q., Gao T., Zhang Y. F., Lei S., Liu Z. F.. Surface-confined single-layer covalent organic framework on single-layer graphene grown on copper foil[J]. Angew. Chem. Int. Ed., 2014,53(36):9564-9568. doi: 10.1002/anie.201400273

    71. [71]

      Yue J. Y., Liu X. H., Sun B., Wang D.. The on-surface synthesis of imine-based covalent organic frameworks with non-aromatic linkage[J]. Chem. Commun., 2015,51(76):14318-14321. doi: 10.1039/C5CC05689F

    72. [72]

      Guan C. Z., Wang D., Wan L. J.. Construction and repair of highly ordered 2D covalent networks by chemical equilibrium regulation[J]. Chem. Commun., 2012,48:2943-2945. doi: 10.1039/c2cc16892h

    73. [73]

      Liu X. H., Guan C. Z., Ding S. Y., Wang W., Yan H. J., Wang D., Wan L. J.. On-surface synthesis of single-layered two-dimensional covalent organic frameworks via solid-vapor interface reactions[J]. J. Am. Chem. Soc., 2013,135(28):10470-10474. doi: 10.1021/ja403464h

    74. [74]

      Li G. X., Li Y. L., Liu H. B., Guo Y. B., Li Y. J., Zhu D. B.. Architecture of graphdiyne nanoscale films[J]. Chem. Commun., 2010,46(19):3256-3258. doi: 10.1039/b922733d

    75. [75]

      Wang S., Yi L., Halpert J. E., Lai X., Liu Y., Cao H., Yu R., Wang D., Li Y.. A novel and highly efficient photocatalyst based on P25-graphdiyne nanocomposite[J]. Small, 2012,8(2):265-271.  

    76. [76]

      Yang N., Liu Y., Wen H., Tang Z., Zhao H., Li Y., Wang D.. Photocatalytic properties of graphdiyne and graphene modified TiO2:from theory to experiment[J]. ACS Nano, 2013,7(2):1504-1512. doi: 10.1021/nn305288z

    77. [77]

      Du H., Deng Z., Lü Z., Yin Y., Yu L., Wu H., Chen Z., Zou Y., Wang Y., Liu H., Li Y.. The effect of graphdiyne doping on the performance of polymer solar cells[J]. Synth. Met., 2011,161(19-20):2055-2057. doi: 10.1016/j.synthmet.2011.04.015

    78. [78]

      Zhang S. L., Du H. P., He J. J., Huang C. S., Liu H. B., Cui G. L., Li Y. L.. Nitrogen-doped graphdiyne applied for lithium-ion storage[J]. ACS Appl. Mater. Interfaces, 2016,8(13):8467-8473. doi: 10.1021/acsami.6b00255

    79. [79]

      Yang H., Zhang S. L., Han L. H., Zhang Z., Xue Z., Gao J., Li Y. J., Huang C. S., Yi Y. P., Liu H. B., Li Y. L.. High conductive two-dimensional covalent organic framework for lithium storage with large capacity[J]. ACS Appl. Mater. Interfaces, 2016,8(8):5366-5375. doi: 10.1021/acsami.5b12370

    80. [80]

      Du H. P., Yang H., Huang C. S., He J. J., Liu H. B., Li Y. L.. Graphdiyne applied for lithium-ion capacitors displaying high power and energy densities[J]. Nano Energy, 2016,22:615-622. doi: 10.1016/j.nanoen.2016.02.052

    81. [81]

      Zhang S. L., Liu H. B., Huang C. S., Cui G. L., Li Y. L.. Bulk graphdiyne powder applied for highly efficient lithium storage[J]. Chem. Commun., 2015,51(10):1834-1837. doi: 10.1039/C4CC08706B

    82. [82]

      Huang C. S., Zhang S. L., Liu H. B., Li Y. J., Cui G. T., Li Y. L.. Graphdiyne for high capacity and long-life lithium storage[J]. Nano Energy, 2015,11:481-489. doi: 10.1016/j.nanoen.2014.11.036

    83. [83]

      Bauer T., Zheng Z., Renn A., Enning R., Stemmer A., Sakamoto J., Schlüter A. D.. Synthesis of free-standing, monolayered organometallic sheets at the air/water interface[J]. Angew. Chem. Int. Ed., 2011,50(34):7879-7884. doi: 10.1002/anie.v50.34

    84. [84]

      Zheng Z., Ruiz-Vargas C. S., Bauer T., Rossi A., Payamyar P., Schütz A., Stemmer A., Sakamoto J., Schlüter A. D.. Square-micrometer-sized, free-standing organometallic sheets and their square-centimeter-sized multilayers on solid substrates[J]. Macromol. Rapid. Commun., 2013,34(21):1670-1680. doi: 10.1002/marc.v34.21

    85. [85]

      Zheng Z., Opilik L., Schiffmann F., Liu W., Bergamini G., Ceroni P., Lee L. T., Schütz A., Sakamoto J., Zenobi R., VandeVondele J., Schlüter A. D.. Synthesis of two-dimensional analogues of copolymers by site-to-site transmetalation of organometallic monolayer sheets[J]. J. Am. Chem. Soc., 2014,136(16):6103-6110. doi: 10.1021/ja501849y

    86. [86]

      Kambe T., Sakamoto R., Hoshiko K., Takada K., Miyachi M., Ryu J. H., Sasaki S., Kim J., Nakazato K., Takata M., Nishihara H.. π-Conjugated nickel bis(dithiolene) complex nanosheet[J]. J. Am. Chem. Soc., 2013,135(7):2462-2465. doi: 10.1021/ja312380b

    87. [87]

      Kambe T., Sakamoto R., Kusamoto T., Pal T., Fukui N., Hoshiko K., Shimojima T., Wang Z., Hirahara T., Ishizaka K., Hasegawa S., Liu F., Nishihara H.. Redox control and high conductivity of nickel bis(dithiolene) complex π-nanosheet:a potential organic two-dimensional topological insulator[J]. J. Am. Chem. Soc., 2014,136(41):14357-14360. doi: 10.1021/ja507619d

    88. [88]

      Dong R., Pfeffermann M., Liang H., Zheng Z., Zhu X., Zhang J., Feng X.. Large-area, free-standing, two-dimensional supramolecular polymer single-layer sheets for highly efficient electrocatalytic hydrogen evolution[J]. Angew. Chem. Int. Ed., 2015,54(41):12058-12063. doi: 10.1002/anie.201506048

    89. [89]

      Sakamoto R., Hoshiko K., Liu Q., Yagi T., Nagayama T., Kusaka S., Tsuchiya M., Kitagawa Y., Wong W., Nishihara H.. A photofunctional bottom-up bis(dipyrrinato)zinc(Ⅱ) complex nanosheet[J]. Nat. Commun., 2015,6. doi: 10.1038/ncomms7713

    90. [90]

      Motoyama S., Makiura R., Sakata O., Kitagawa H.. Highly crystalline nanofilm by layering of porphyrin metal-organic framework sheets[J]. J. Am. Chem. Soc., 2011,133(15):5640-5643. doi: 10.1021/ja110720f

    91. [91]

      Chen Y., Li M., Payamyar P., Zheng Z., Sakamoto J., Schlüter A. D.. Room temperature synthesis of a covalent monolayer sheet at air/water interface using a shape-persistent photoreactive amphiphilic monomer[J]. ACS Macro Lett., 2014,3(2):153-158. doi: 10.1021/mz400597k

    92. [92]

      Payamyar P., Kaja K., Ruiz-Vargas C., Stemmer A., Murray D. J., Johnson C. J., King B. T., Schiffmann F., VandeVondele J., Renn A., Götzinger S., Ceroni P., Schütz A., Lee L. T., Zheng Z., Sakamoto J., Schlüter A. D.. Synthesis of a covalent monolayer sheet by photochemical anthracene dimerization at the air/water interface and its mechanical characterization by AFM indentation[J]. Adv. Mater., 2014,26(13):2052-2058. doi: 10.1002/adma.201304705

    93. [93]

      Murray D. J., Patterson D. D., Payamyar P., Bhola R., Song W., Lackinger M., Schlüter A. D., King B. T.. Large area synthesis of a nanoporous two-dimensional polymer at the air/water interface[J]. J. Am. Chem. Soc., 2015,137(10):3450-3453. doi: 10.1021/ja512018j

    94. [94]

      Dai W., Shao F., Szczerbiński J., McCaffrey R., Zenobi R., Jin Y., Schlüter A. D., Zhang W.. Synthesis of a two-dimensional covalent organic monolayer through dynamic imine chemistry at the air/water interface[J]. Angew. Chem. Int. Ed., 2016,55(1):213-217. doi: 10.1002/anie.201508473

    95. [95]

      Sahabudeen H., Qi H. Y., Glatz B. A., Tranca D., Dong R. H., Hou Y., Zhang T., Kuttner C., Lehnert T., Seifert G., Kaiser U., Fery A., Zheng Z. K., Feng X. L.. Wafer-sized multifunctional polyimine-based two-dimensional conjugated polymers with high mechanical stiffness[J]. Nat. Commun., 2016. doi: 10.1038/ncomms13461

    96. [96]

      Matsuoka R., Sakamoto R., Hoshiko K., Sasaki S., Masunaga H., Nagashio K., Nishihara H.. Crystalline graphdiyne nanosheets produced at a gas/liquid or liquid/liquid interface[J]. J. Am. Chem. Soc., 2017,139(8):3145-3152. doi: 10.1021/jacs.6b12776

    97. [97]

      Makiura R., Motoyama S., Umemura Y., Yamanaka H., Sakata O., Kitagawa H.. Surface nano-architecture of a metal0organic framework[J]. Nat. Mater., 2010,9(7):565-571. doi: 10.1038/nmat2769

    98. [98]

      Rodenas T., Luz I., Prieto G., Seoane B., Miro H., Corma A., Kapteijn F., Llabres i Xamena F. X., Gascon J.. Metal-organic framework nanosheets in polymer composite materials for gas separation[J]. Nat. Mater., 2015,14(1):48-55. doi: 10.1038/nmat4113

    99. [99]

      Hu M., Ishihara S., Yamauchi Y.. Bottom-up synthesis of monodispersed single-crystalline cyano-bridged coordination polymer nanoflakes[J]. Angew. Chem. Int. Ed., 2013,52(4):1235-1239. doi: 10.1002/anie.201208501

    100. [100]

      Netzer N. L., Dai F. R., Wang Z., Jiang C.. pH-Modulated molecular assemblies and surface properties of metal-organic supercontainers at the air-water interface[J]. Angew. Chem. Int. Ed., 2014,53(41):10965-10969. doi: 10.1002/anie.201406733

    101. [101]

      Xu G., Yamada T., Otsubo K., Sakaida S., Kitagawa H.. Facile "modular assembly" for fast construction of a highly oriented crystalline MOF nanofilm[J]. J. Am. Chem. Soc., 2012,134(40):16524-16527. doi: 10.1021/ja307953m

    102. [102]

      Makiura R., Konovalov O.. Interfacial growth of large-area single-layer metal-organic framework nanosheets[J]. Sci. Rep., 2013,3. doi: 10.1038/srep02506

    103. [103]

      Pfeffermann M., Dong R., Graf R., Zajaczkowski W., Gorelik T., Pisula W., Narita A., Mullen K., Feng X.. Free-standing monolayer two-dimensional supramolecular organic framework with good internal order[J]. J. Am. Chem. Soc., 2015,137(45):14525-14532. doi: 10.1021/jacs.5b09638

    104. [104]

      Kory M. J., Bergeler M., Reiher M., Schlüter A. D.. Facile synthesis and theoretical conformation analysis of a triazine-based double-decker rotor molecule with three anthracene blades[J]. Chem. Eur. J., 2014,20:6934-6938. doi: 10.1002/chem.201400364

    105. [105]

      Kissel P., Erni R., Schweizer W. B., Rossell M. D., King B. T., Bauer T., Götzinger S., Schlüter A. D., Sakamoto J.. A two-dimensional polymer prepared by organic synthesis[J]. Nat. Chem., 2012,4(4):287-291. doi: 10.1038/nchem.1265

    106. [106]

      Kory M. J., Worle M., Weber T., Payamyar P., van de Poll S. W., Dshemuchadse J., Trapp N., Schluter A. D.. Gram-scale synthesis of two-dimensional polymer crystals and their structure analysis by X-ray diffraction[J]. Nat. Chem., 2014,6(9):779-784. doi: 10.1038/nchem.2007

    107. [107]

      Kissel P., Murray D. J., Wulftange W. J., Catalano V. J., King B. T.. A nanoporous two-dimensional polymer by single-crystal-to-single-crystal photopolymerization[J]. Nat. Chem., 2014,6(9):774-778. doi: 10.1038/nchem.2008

    108. [108]

      Bhola R., Payamyar P., Murray D. J., Kumar B., Teator A. J., Schmidt M. U., Hammer S. M., Saha A., Sakamoto J., Schluter A. D., King B. T.. A two-dimensional polymer from the anthracene dimer and triptycene motifs[J]. J. Am. Chem. Soc., 2013,135(38):14134-14141. doi: 10.1021/ja404351p

    109. [109]

      Lange R. Z., Hofer G., Weber T., Schlüter A. D.. A two-dimensional polymer synthesized through topochemical[2 + 2]-cycloaddition on the multigram scale[J]. J. Am. Chem. Soc., 2017,139(5):2053-2059. doi: 10.1021/jacs.6b11857

    110. [110]

      Zhang K. D., Tian J., Hanifi D., Zhang Y., Sue A. C. H., Zhou T. Y., Zhang L., Zhao X., Liu Y., Li Z. T.. Toward a single-layer two-dimensional honeycomb supramolecular organic framework in water[J]. J. Am. Chem. Soc., 2013,135(47):17913-17918. doi: 10.1021/ja4086935

    111. [111]

      Cao L. Y., Lin Z. K., Peng F., Wang W. W., Huang R. Y., Wang C., Yan J. W., Liang J., Zhang Z. M., Zhang T., Long L. S., Sun J. L., Lin W. B.. Self-supporting metal-organic layers as single-site solid catalysts[J]. Angew. Chem. Int. Ed., 2016,55(16):4962-4966. doi: 10.1002/anie.v55.16

    112. [112]

      Baek K., Yun G., Kim Y., Kim D., Hota R., Hwang I., Xu D., Ko Y. H., Gu G. H., Suh J. H., Park C. G., Sung B. J., Kim K.. Free-standing, single-monomer-thick two-dimensional polymers through covalent self-assembly in aolution[J]. J. Am. Chem. Soc., 2013,135(17):6523-6528. doi: 10.1021/ja4002019

    113. [113]

      Zhou T. Y., Lin F., Li Z. T., Zhao X.. Single-step solution-phase synthesis of free-standing two-dimensional polymers and their evolution into hollow spheres[J]. Macromolecules, 2013,46(19):7745-7752. doi: 10.1021/ma401570g

    114. [114]

      Kim J., Baek K., Shetty D., Selvapalam N., Yun G., Kim N. H., Ko Y. H., Park K. M., Hwang I., Kim K.. Reversible morphological transformation between polymer nanocapsules and thin films through dynamic covalent self-assembly[J]. Angew. Chem. Int. Ed., 2015,127(9):2731-2735. doi: 10.1002/ange.201411842

    115. [115]

      Calik M., Sick T., Dogru M., Döblinger M., Datz S., Budde H., Hartschuh A., Auras F., Bein T.. From highly crystalline to outer surface-functionalized covalent organic frameworks-a modulation approach[J]. J. Am. Chem. Soc., 2015,138(4):1234-1239.  

    116. [116]

      Zhao Y., Bernitzky R. H. M., Kory M. J., Hofer G., Hofkens J., Schlüter A. D.. Decorating the edges of a 2D polymer with a fluorescence label[J]. J. Am. Chem. Soc., 2016,138(28):8976-8981. doi: 10.1021/jacs.6b05456

  • 加载中
    1. [1]

      Junhua WangXin LianXichuan CaoQiao ZhaoBaiyan LiXian-He Bu . Dual polarization strategy to enhance CH4 uptake in covalent organic frameworks for coal-bed methane purification. Chinese Chemical Letters, 2024, 35(8): 109180-. doi: 10.1016/j.cclet.2023.109180

    2. [2]

      Hui-Juan WangWen-Wen XingZhen-Hai YuYong-Xue LiHeng-Yi ZhangQilin YuHongjie ZhuYao-Yao WangYu Liu . Cucurbit[7]uril confined phenothiazine bridged bis(bromophenyl pyridine) activated NIR luminescence for lysosome imaging. Chinese Chemical Letters, 2024, 35(6): 109183-. doi: 10.1016/j.cclet.2023.109183

    3. [3]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    4. [4]

      Jieqiong QinZhi YangJiaxin MaLiangzhu ZhangFeifei XingHongtao ZhangShuxia TianShuanghao ZhengZhong-Shuai Wu . Interfacial assembly of 2D polydopamine/graphene heterostructures with well-defined mesopore and tunable thickness for high-energy planar micro-supercapacitors. Chinese Chemical Letters, 2024, 35(7): 108845-. doi: 10.1016/j.cclet.2023.108845

    5. [5]

      Yuting Wu Haifeng Lv Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375

    6. [6]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    7. [7]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    8. [8]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    9. [9]

      Xinyi CaoYucheng JinHailong WangXu DingXiaolin LiuBaoqiu YuXiaoning ZhanJianzhuang Jiang . A tetraaldehyde-derived porous organic cage and covalent organic frameworks: Syntheses, structures, and iodine vapor capture. Chinese Chemical Letters, 2024, 35(9): 109201-. doi: 10.1016/j.cclet.2023.109201

    10. [10]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    11. [11]

      Xuan Zhu Lin Zhou Xiao-Yun Huang Yan-Ling Luo Xin Deng Xin Yan Yan-Juan Wang Yan Qin Yuan-Yuan Tang . (Benzimidazolium)2GeI4: A layered two-dimensional perovskite with dielectric switching and broadband near-infrared photoluminescence. Chinese Journal of Structural Chemistry, 2024, 43(6): 100272-100272. doi: 10.1016/j.cjsc.2024.100272

    12. [12]

      Jaeyong AhnZhenping LiZhiwei WangKe GaoHuagui ZhuoWanuk ChoiGang ChangXiaobo ShangJoon Hak Oh . Surface doping effect on the optoelectronic performance of 2D organic crystals based on cyano-substituted perylene diimides. Chinese Chemical Letters, 2024, 35(9): 109777-. doi: 10.1016/j.cclet.2024.109777

    13. [13]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    14. [14]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    15. [15]

      Dong-Ling Kuang Song Chen Shaoru Chen Yong-Jie Liao Ning Li Lai-Hon Chung Jun He . 2D Zirconium-based metal-organic framework/bismuth(III) oxide nanorods composite for electrocatalytic CO2-to-formate reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100301-100301. doi: 10.1016/j.cjsc.2024.100301

    16. [16]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

    17. [17]

      Wenlong LiFeishi ShanQingdong BaoQinghua LiHua GaoLeyong Wang . Supramolecular assembly nanoparticle for trans-epithelial treatment of keratoconus. Chinese Chemical Letters, 2024, 35(10): 110060-. doi: 10.1016/j.cclet.2024.110060

    18. [18]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    19. [19]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    20. [20]

      Tian YangYi LiuLina HuaYaoyao ChenWuqian GuoHaojie XuXi ZengChanghao GaoWenjing LiJunhua LuoZhihua Sun . Lead-free hybrid two-dimensional double perovskite with switchable dielectric phase transition. Chinese Chemical Letters, 2024, 35(6): 108707-. doi: 10.1016/j.cclet.2023.108707

Metrics
  • PDF Downloads(0)
  • Abstract views(845)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return