Citation: Wei Song, Yang You, Tian-Jing Li, Juan Li, Liang Ding. Perylene Bisimide In-chain Polyethylene with Unique Self-assembly Nanostructure through Acyclic Diene Metathesis (ADMET) Polymerization[J]. Chinese Journal of Polymer Science, ;2018, 36(6): 703-711. doi: 10.1007/s10118-018-2067-1 shu

Perylene Bisimide In-chain Polyethylene with Unique Self-assembly Nanostructure through Acyclic Diene Metathesis (ADMET) Polymerization

  • Corresponding author: Wei Song, sw121092@ycit.cn Liang Ding, dl1984911@ycit.edu.cn
  • Received Date: 16 September 2017
    Accepted Date: 17 October 2017
    Available Online: 13 February 2018

  • A novel perylene tetracarboxylic acid bisimide (PTCBI) in-chain polyethylene (PE) was first prepared via acyclic diene metathesis (ADMET) polymerization of PTCBI-functionalized α, ω-diene monomer. The polymers could spontaneously self-assemble into hollow cylindrical structures in which the π-π interaction between adjacent PTCBI moieties was enhanced and the electron mobility was possibly promoted. The hydrogenation of as-obtained polymer was readily accomplished, affording the desired precision PTCBI in-chain PE with a saturated backbone, which showed high glass transition temperature (Tg=63℃), relatively wide range of light absorption (λ=200-575 nm), and higher LUMO level (-3.62 eV). It can therefore serve as a superior model for facile construction of functional polyolefin and soluble PTCBI polymer with ordered architecture.
  • 加载中
    1. [1]

      Zhao X. G., Ma L. C., Zhang L., Wen Y. G., Chen J. M., Shuai Z. G., Liu Y. Q., Zhan X. W.. An acetylene-containing perylene diimide copolymer for high mobility n-channel transistor in air[J]. Macromolecules, 2013,46(6):2152-2158. doi: 10.1021/ma302428x

    2. [2]

      Rajaram S., Shivanna R., Kandappa S. K., Narayan K. S.. Nonplanar perylene diimides as potential alternatives to fullerenes in organic solar cells[J]. J. Phys. Chem. Lett., 2012,3(17):2405-2408. doi: 10.1021/jz301047d

    3. [3]

      Lindner S. M., Hüttner S., Chiche A., Thelakkat M., Krausch G.. Charge separation at self-assembled nanostructured bulk interface in block copolymers[J]. Angew. Chem. Int. Ed., 2006,45(20):3364-3368. doi: 10.1002/(ISSN)1521-3773

    4. [4]

      Rajaram S., Armstrong P. B., Kim B. J., Fréchet J. M.. Effect of addition of a diblock copolymer on blend morphology and performance of poly(3-hexylthiophene):perylene diimide solar cells[J]. Chem. Mater., 2009,21(9):1775-1777. doi: 10.1021/cm900911x

    5. [5]

      Zhang Q., Cirpan A., Russell T. P., Emrick T.. Donor-acceptor poly(thiophene-block-perylene diimide) copolymers:synthesis and solar cell fabrication[J]. Macromolecules, 2009,42(4):1079-1082. doi: 10.1021/ma801504e

    6. [6]

      Huang J., Wu Y., Fu H., Zhan X., Yao J., Barlow S., Marder S. R.. Photoinduced intramolecular electron transfer in conjugated perylene bisimide-dithienothiophene systems:a comparative study of a small molecule and a polymer[J]. J. Phys. Chem. A, 2009,113(17):5039-5046. doi: 10.1021/jp8107655

    7. [7]

      Jiang W., Xiao C., Hao L., Wang Z., Ceymann H., Lambert C., Motta S. D., Negri F.. Localization/delocalization of charges in bay-linked perylene bisimides[J]. Chem. Eur. J., 2012,18(22):6764-6775. doi: 10.1002/chem.201103954

    8. [8]

      Singh R., Giussani E., Mróz M. M., Fonzo F. D., Fazzi D., González J. C., Oldridge L., Vaenas N., Kontos A. G., Falaras P., Grimsdale A. C., Jacob J., Mullen K., Keivanidis P. E.. On the role of aggregation effects in the performance of perylene-diimide based solar cells[J]. Org. Electron., 2014,15(7):1347-1361. doi: 10.1016/j.orgel.2014.03.044

    9. [9]

      Song S. F., Guo Y. T., Wang R. Y., Fu Z. S., Xu J. T., Fan Z. Q.. Synthesis and crystallization behavior of equisequential ADMET polyethylene containing arylene ether defects:remarkable effects of substitution position and arylene size[J]. Macromolecules, 2016,49(16):6001-6011. doi: 10.1021/acs.macromol.6b01324

    10. [10]

      Lv A., Cui Y., Du F. S., Li Z. C.. Thermally degradable polyesters with tunable degradation temperatures via postpolymerization modification and intramolecular cyclization[J]. Macromolecules, 2016,49(22):8449-8458. doi: 10.1021/acs.macromol.6b01325

    11. [11]

      Zhang H., Liu F., Cao J., Ling L., Sun R. F.. Ferrocenecontaining polymers synthesized by acyclic diene metathesis (ADMET) polymerization[J]. Chinese. J. Polym. Sci., 2016,34(2):242-252. doi: 10.1007/s10118-016-1743-2

    12. [12]

      Ding L., Song W., Jiang R. Y., Zhu L.. A straightforward approach for one-pot synthesis of noncovalently connected graft copolymers with unique self-assembly nanostructures[J]. Polym. Chem., 2016,7(45):6992-7001. doi: 10.1039/C6PY01509C

    13. [13]

      Li Q. B., Wang T. S., Ma C., Bai W., Bai R. K.. Facile and highly efficient strategy for synthesis of functional polyesters via tetramethyl guanidine promoted polyesterification at room temperature[J]. ACS Macro Lett., 2014,3(11):1161-1164. doi: 10.1021/mz5005184

    14. [14]

      Song W., Han H. J., Wu J. H., Xie M. R.. Ladder-like polyacetylene with excellent optoelectronic properties and regular architecture[J]. Chem. Commun., 2014,50(85):12899-12902. doi: 10.1039/C4CC05524A

    15. [15]

      Xie M. R., Han H. J., Jin O. Y., Du C. X.. Synthesis of ionic hybrid polymers with polyhedral oligomeric silsesquioxane pendant by acyclic diene metathesis polymerization and characterization[J]. Acta Chim. Sinica, 2013,71(10):1441-1445. doi: 10.6023/A13040377

    16. [16]

      Thompson D., Yamakado R., Wagener K. B.. Extending the methylene spacer length of ADMET hydroxy-functionalized polymers[J]. Macromol. Chem. Phys., 2014,215(12):1212-1217. doi: 10.1002/macp.v215.12

    17. [17]

      Rojas G., Wagener K. B.. Precisely and irregularly sequenced ethylene/1-hexene copolymers:a synthesis and thermal study[J]. Macromolecules, 2009,42(6):1934-1947. doi: 10.1021/ma802241s

    18. [18]

      Li Y. F., Cao Y., Gao J., Wang D., Yu G., Heeger A. J.. Electrochemical properties of luminescent polymers and polymer light-emitting electrochemical cells[J]. Synth. Met., 1999,99(3):243-248. doi: 10.1016/S0379-6779(99)00007-7

    19. [19]

      Gvishi R., Reisfeld R., Burshtein Z.. Spectroscopy and laser action of the "red perylimide dye" in various solvents[J]. Chem. Phys. Lett., 1993,213(3-4):338-344. doi: 10.1016/0009-2614(93)85142-B

    20. [20]

      Xiao Z., Matsuo Y., Soga I., Nakamura E.. Structurally defined high-LUMO-level 66π-[70]fullerene derivatives:synthesis and application in organic photovoltaic cells[J]. Chem. Mater., 2012,24(13):2572-2582.  

    21. [21]

      Baughman T. W., Sworen J. C., Wagener K. B.. Sequenced ethylene-propylene copolymers:effects of short ethylene run lengths[J]. Macromolecules, 2006,39(15):5028-5036. doi: 10.1021/ma0602876

    22. [22]

      Simocko C., Young T. C., Wagener K. B.. ADMET polymers containing precisely spaced pendant boronic acids and esters[J]. Macromolecules, 2015,48(16):5470-5473. doi: 10.1021/acs.macromol.5b01410

    23. [23]

      Song W., Wu J. H., Yang G. D., Han H. J., Xie M. R., Liao X. J.. Precise perylene bisimide-substituted polyethylene with high glass transition temperature and ordered architecture[J]. RSC Adv., 2015,5(84):68765-68772. doi: 10.1039/C5RA10049F

    24. [24]

      Nielsen C. B., Veldman D., Rapun R. M., Janssen R. A. J.. Copolymers of polyethylene and perylenediimides through ring-opening metathesis polymerization[J]. Macromolecules, 2008,41(4):1094-1103. doi: 10.1021/ma702350r

  • 加载中
    1. [1]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

    2. [2]

      Lingyun ShenShenxiang YinQingshu ZhengZheming SunWei WangTao Tu . A rechargeable and portable hydrogen storage system grounded on soda water. Chinese Chemical Letters, 2025, 36(3): 110580-. doi: 10.1016/j.cclet.2024.110580

    3. [3]

      Yunlong SunWei DingYanhao WangZhening ZhangRuyun WangYinghui GuoZhiyuan GaoHaiyan DuDong Ma . New insight into manganese-enhanced abiotic degradation of microplastics: Processes and mechanisms. Chinese Chemical Letters, 2025, 36(3): 109941-. doi: 10.1016/j.cclet.2024.109941

    4. [4]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    5. [5]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    6. [6]

      Rui HUANGShengjie LIUQingyuan WUNanfeng ZHENG . Enhanced selectivity of catalytic hydrogenation of halogenated nitroaromatics by interfacial effects. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 201-212. doi: 10.11862/CJIC.20240356

    7. [7]

      Minghui ZhangNa ZhangQian ZhaoChao WangAlexander SteinerJianliang XiaoWeijun Tang . Cobalt pincer complex-catalyzed highly enantioselective hydrogenation of quinoxalines. Chinese Chemical Letters, 2025, 36(4): 110081-. doi: 10.1016/j.cclet.2024.110081

    8. [8]

      Qiang CaoXue-Feng ChengJia WangChang ZhouLiu-Jun YangGuan WangDong-Yun ChenJing-Hui HeJian-Mei Lu . Graphene from microwave-initiated upcycling of waste polyethylene for electrocatalytic reduction of chloramphenicol. Chinese Chemical Letters, 2024, 35(4): 108759-. doi: 10.1016/j.cclet.2023.108759

    9. [9]

      Xiaxia XingXiaoyu ChenZhenxu LiXinhua ZhaoYingying TianXiaoyan LangDachi Yang . Polyethylene imine functionalized porous carbon framework for selective nitrogen dioxide sensing with smartphone communication. Chinese Chemical Letters, 2024, 35(9): 109230-. doi: 10.1016/j.cclet.2023.109230

    10. [10]

      Yue RenKang LiYi-Zi WangShao-Peng ZhaoShu-Min PanHaojie FuMengfan JingYaming WangFengyuan YangChuntai Liu . Swelling and erosion assisted sustained release of tea polyphenol from antibacterial ultrahigh molecular weight polyethylene for joint replacement. Chinese Chemical Letters, 2025, 36(2): 110468-. doi: 10.1016/j.cclet.2024.110468

    11. [11]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    12. [12]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    13. [13]

      Shaoming DongYiming NiuYinghui PuYongzhao WangBingsen Zhang . Subsurface carbon modification of Ni-Ga for improved selectivity in acetylene hydrogenation reaction. Chinese Chemical Letters, 2024, 35(12): 109525-. doi: 10.1016/j.cclet.2024.109525

    14. [14]

      Jinyuan Cui Tingting Yang Teng Xu Jin Lin Kunlong Liu Pengxin Liu . Hydrogen spillover enhances the selective hydrogenation of α,β-unsaturated aldehydes on the Cu-O-Ce interface. Chinese Journal of Structural Chemistry, 2025, 44(1): 100438-100438. doi: 10.1016/j.cjsc.2024.100438

    15. [15]

      Sanmei WangDengxin YanWenhua ZhangLiangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611

    16. [16]

      Wenzhong ZhangZirui YanLingcheng ChenYi Xiao . Sn-fused perylene diimides: Synthesis, mechanism, and properties. Chinese Chemical Letters, 2024, 35(10): 109582-. doi: 10.1016/j.cclet.2024.109582

    17. [17]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    18. [18]

      Ruixue LiuXiaobing DingQiwei LangGen-Qiang ChenXumu Zhang . Enantioselective and divergent construction of chiral amino alcohols and oxazolidin-2-ones via Ir-f-phamidol-catalyzed dynamic kinetic asymmetric hydrogenation. Chinese Chemical Letters, 2025, 36(3): 110037-. doi: 10.1016/j.cclet.2024.110037

    19. [19]

      Jaeyong AhnZhenping LiZhiwei WangKe GaoHuagui ZhuoWanuk ChoiGang ChangXiaobo ShangJoon Hak Oh . Surface doping effect on the optoelectronic performance of 2D organic crystals based on cyano-substituted perylene diimides. Chinese Chemical Letters, 2024, 35(9): 109777-. doi: 10.1016/j.cclet.2024.109777

    20. [20]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

Metrics
  • PDF Downloads(0)
  • Abstract views(654)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return