Citation: Sheng-Xue Qin, Cui-Xiang Yu, Xue-Yang Chen, Hai-Ping Zhou, Li-Fen Zhao. Fully Biodegradable Poly(lactic acid)/Poly(propylene carbonate) Shape Memory Materials with Low Recovery Temperature Based on in situ Compatibilization by Dicumyl Peroxide[J]. Chinese Journal of Polymer Science, ;2018, 36(6): 783-790. doi: 10.1007/s10118-018-2065-3 shu

Fully Biodegradable Poly(lactic acid)/Poly(propylene carbonate) Shape Memory Materials with Low Recovery Temperature Based on in situ Compatibilization by Dicumyl Peroxide

  • Corresponding author: Hai-Ping Zhou, zhouhp325@163.com Li-Fen Zhao, lfzhao2009@126.com
  • Received Date: 5 September 2017
    Accepted Date: 17 October 2017
    Available Online: 30 January 2018

  • Fully biodegradable blends with low shape memory recovery temperature were obtained based on poly(lactic acid) (PLA) and poly(propylene carbonate) (PPC). By virtue of their similar chemical structures, in situ cross-linking reaction initiated by dicumyl peroxide (DCP) between PLA and PPC chains was realized in PLA/PPC blends. Therefore, the compatibility between PLA and PPC was increased, which obviously changed the phase structures and increased the elongation at break of the blends. The compatibilized blends had a recovery performance at 45℃. Combining the changes of phase structures, the mechanism of the shape memory was discussed. It was demonstrated that in situ compatibilization by dicumyl peroxide was effective to obtain eco-friendly PLA/PPC blends with good mechanical and shape memory properties.
  • 加载中
    1. [1]

      Cha K. J., Lih E., Choi J., Joung Y. K., Ahn D. J., Han D. K.. Shape-memory effect by specific biodegradable polymer blending for biomedical applications[J]. Macromol. Biosci., 2014,14(5):667-678. doi: 10.1002/mabi.201300481

    2. [2]

      Wong Y. S., Stachurski Z. H., Venkatraman S. S.. Modeling shape memory effect in uncrosslinked amorphous biodegradable polymer[J]. Polymer, 2011,52(3):874-880. doi: 10.1016/j.polymer.2010.12.004

    3. [3]

      Kotharangannagari V. K., Krishnan K.. Biodegradable hybrid nanocomposites of starch/lysine and zno nanoparticles with shape memory properties[J]. Mater. Design, 2016,109:590-595. doi: 10.1016/j.matdes.2016.07.046

    4. [4]

      Navarro-Baena I., Sessini V., Dominici F., Torre L., Kenny J. M., Peponi L.. Design of biodegradable blends based on PLA and PCL:from morphological, thermal and mechanical studies to shape memory behavior[J]. Polym. Degrad. Stab., 2016,132:97-108. doi: 10.1016/j.polymdegradstab.2016.03.037

    5. [5]

      Gu S., Gao X., Jin S., Liu Y.. Biodegradable shape memory polyurethanes with controllable trigger temperature[J]. Chinese J. Polym. Sci., 2016,34(6):720-729. doi: 10.1007/s10118-016-1795-3

    6. [6]

      Zini E., Scandola M., Dobrzynski P., Kasperczyk J., Bero M.. Shape memory behavior of novel (L-lactide-glycolidetrimethylene carbonate) terpolymers[J]. Biomacromolecules, 2009,8(11):3661-3667.  

    7. [7]

      Xing Q., Li R., Dong X., Zhang X., Zhang L., Wang D.. Phase morphology, crystallization behavior and mechanical properties of poly(L-lactide) toughened with biodegradable polyurethane:effect of composition and hard segment ratio[J]. Chinese J. Polym. Sci, 2015,33(9):1294-1304. doi: 10.1007/s10118-015-1679-y

    8. [8]

      Talbamrung T., Kasemsook C., Sangtean W., Wachirahuttapong S., Thongpin C.. Effect of peroxide and organoclay on thermal and mechanical properties of PLA in PLA/NBR melted blend[J]. Energy. Proced., 2016,89:274-281. doi: 10.1016/j.egypro.2016.05.035

    9. [9]

      Jing X., Mi H., Peng X., Turng L.. The morphology, properties, and shape memory behavior of polylactic acid/thermoplastic polyurethane blends[J]. Polym. Eng. Sci, 2015,55(1):70-80. doi: 10.1002/pen.v55.1

    10. [10]

      Wei Z., Long C., Yu Z.. Surprising shape-memory effect of polylactide resulted from toughening by polyamide elastomer[J]. Polymer, 2009,50(5):1311-1315. doi: 10.1016/j.polymer.2009.01.032

    11. [11]

      Yuan D., Chen Z., Xu C., Chen K., Chen Y.. Fully biobased shape memory material based on novel cocontinuous structure in poly(lactic acid)/natural rubber TVPs fabricated via peroxide-induced dynamic vulcanization and in situ interfacial compatibilization[J]. ACS Sustain. Chem. Eng., 2015,3(11):2856-2865. doi: 10.1021/acssuschemeng.5b00788

    12. [12]

      Barreto C., Altskär A., Fredriksen S., Hansen E., Rychwalski R. W.. Multiwall carbon nanotube/ppc composites:preparation, structural analysis and thermal stability[J]. Eur. Polym. J., 2013,49(8):2149-2161. doi: 10.1016/j.eurpolymj.2013.05.009

    13. [13]

      Wang X. Y., Weng Y. X., Wang W., Huang Z. G., Wang Y. Z.. Modification of poly(propylene carbonate) with chain extender ADR-4368 to improve its thermal, barrier, and mechanical properties[J]. Polym. Test, 2016,54:301-307. doi: 10.1016/j.polymertesting.2016.07.024

    14. [14]

      Xing C., Wang H., Hu Q., Xu F., Cao X., You J.. Mechanical and thermal properties of eco-friendly poly(propylene carbonate)/cellulose acetate butyrate blends[J]. Carbohyd. Polym., 2013,92(2):1921-1927. doi: 10.1016/j.carbpol.2012.11.058

    15. [15]

      Hu X., Xu C., Gao J., Yang G., Geng C., Chen F.. Toward environment-friendly composites of poly(propylene carbonate) reinforced with cellulose nanocrystals[J]. Compos. Sci. Technol., 2013,78(2):63-68.  

    16. [16]

      Cui S., Li L., Wang Q.. Enhancing glass transition temperature and mechanical properties of poly(propylene carbonate) by intermacromolecular complexation with poly(vinyl alcohol)[J]. Compos. Sci. Technol., 2016,127:177-184. doi: 10.1016/j.compscitech.2016.03.007

    17. [17]

      Seo J., Jeon G., Jang E. S., Khan S. B., Han H.. Preparation and properties of poly(propylene carbonate) and nanosized zno composite films for packaging applications[J]. J. Appl. Polym. Sci., 2011,122(2):1101-1108. doi: 10.1002/app.v122.2

    18. [18]

      Song P., Xiao M., Du F., Wang S., Gan L., Liu G.. Synthesis and properties of aliphatic polycarbonates derived from carbon dioxide, propylene oxide and maleic anhydride[J]. J. Appl. Polym. Sci., 2008,109(6):4121-4129. doi: 10.1002/app.v109:6

    19. [19]

      Wang S., Du L., Zhao X., Meng Y., Tjong S.. Synthesis and characterization of alternating copolymer from carbon dioxide and propylene oxide[J]. J. Appl. Polym. Sci., 2010,85(11):2327-2334.  

    20. [20]

      Li Z., Li W., Zhang H., Dong L.. Thermal, rheological and mechanical properties of poly(propylene carbonate)/methyl methacrylate-butadiene-styrene blends[J]. Iran. Polym. J, 2015,24(10):861-870. doi: 10.1007/s13726-015-0374-8

    21. [21]

      Zhou L., Zhao G., Jiang W.. Effects of catalytic transesterification and composition on the toughness of poly(lactic acid)/poly(propylene carbonate) blends[J]. Ind. Eng. Chem. Res., 2016,55(19):5565-5573. doi: 10.1021/acs.iecr.6b00315

    22. [22]

      Chen Y., Peng Y., Liu W., Zeng G., Li X., Yan X.. Study on the mechenical properties of PPC/PLA blends modified by poss[J]. Adv. Mater. Res., 2013,741:28-32. doi: 10.4028/www.scientific.net/AMR.741

    23. [23]

      Gao J., Fu Q., Bai H., Zhang Q.. Effect of homopolymer poly(vinyl acetate) on compatibility and mechanical properties of poly(propylene carbonate)/poly(lactic acid) blends[J]. Express Polym. Lett., 2012,6(11):860-870. doi: 10.3144/expresspolymlett.2012.92

    24. [24]

      Yao M., Deng H., Mai F., Wang K.. Modification of poly(lactic acid)/poly(propylene carbonate) blends through melt compounding with maleic anhydride[J]. Express Polym. Lett., 2011,5(11):937-949. doi: 10.3144/expresspolymlett.2011.92

    25. [25]

      Hwang S. W., Park D. H., Kang D. H., Lee S. B., Shim J. K.. Reactive compatibilization of poly(L-lactic acid)/poly(propylene carbonate) blends:thermal, thermomechanical, and morphological properties[J]. J. Appl. Polym. Sci., 2016,133(18). doi: 10.1002/APP.43388

    26. [26]

      Yuan D., Xu C., Chen Z., Chen Y.. Crosslinked bicontinuous biobased polylactide/natural rubber materials:super toughness, "net-like"-structure of NR phase and excellent interfacial adhesion[J]. Polym. Test, 2014,38:73-80. doi: 10.1016/j.polymertesting.2014.07.004

    27. [27]

      Xu P., Ma P., Cai X., Song S., Zhang Y., Dong W.. Selectively cross-linked poly (lactide)/ethylene-glycidyl methacrylate-vinyl acetate thermoplastic elastomers with partial dual-continuous network-like structures and shape memory performances[J]. Eur. Polym. J., 2016,84:1-12.  

    28. [28]

      Raidt T., Hoeher R., Katzenberg F., Tiller J. C.. Chemical cross-linking of polypropylenes towards new shape memory polymers[J]. Macromol. Rapid Commun., 2015,36(8):744-749. doi: 10.1002/marc.v36.8

    29. [29]

      Wang Y., Zhu G., Tang Y., Xie J., Liu T., Liu Z.. Mechanical and shape memory behavior of chemically cross-linked SBS/LDPE blends[J]. J. Polym. Res., 2014,21(4):1-10.  

    30. [30]

      Ma P., Cai X., Zhang Y., Wang S., Dong W., Chen M., Lemstra P. J.. In situ compatibilization of poly(lactic acid) and poly(butylene adipate-co-terephthalate) blends by using dicumyl peroxide as a free-radical initiator[J]. Polym. Degrad. Stab., 2014,102(2):145-151.  

    31. [31]

      Akos N. I., Wahit M. U., Mohamed R., Yussuf A. A.. Preparation, characterization, and mechanical properties of poly(ε-caprolactone)/polylactic acid blend composites[J]. Polym. Compos, 2013,34(5):763-768. doi: 10.1002/pc.v34.5

    32. [32]

      Rytlewski P., Żenkiewicz M., Malinowski R.. Influence of dicumyl peroxide content on thermal and mechanical properties of polylactide[J]. Int. Polym. Proc., 2013,26(5):580-586.  

    33. [33]

      Lim S. W., Choi M. C., Jeong J. H., Park E. Y., Ha C. S.. Toughening poly(lactic acid) (PLA) through reactive blending with liquid polybutadiene rubber (LPB)[J]. Compos. Interface., 2016,23(8):807-818. doi: 10.1080/09276440.2016.1175168

    34. [34]

      Agarwal M., Koelling K. W., Chalmers J. J.. Characterization of the degradation of polylactic acid polymer in a solid substrate environment[J]. Biotechnol. Prog., 1998,14(3):517-526. doi: 10.1021/bp980015p

    35. [35]

      Fei B., Chen C., Peng S., Zhao X., Wang X., Dong L.. FTIR study of poly(propylene carbonate)/bisphenol A blends[J]. Polym. Int., 2010,53(12):2092-2098.  

  • 加载中
    1. [1]

      Lian SunHonglei WangMing MaTingting CaoLeilei ZhangXingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188

    2. [2]

      Zhipeng Wan Hao Xu Peng Wu . Selective oxidation using in-situ generated hydrogen peroxide over titanosilicates. Chinese Journal of Structural Chemistry, 2024, 43(6): 100298-100298. doi: 10.1016/j.cjsc.2024.100298

    3. [3]

      Haojie SongLaiyu LuoSiyu WangGuo ZhangBaojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347

    4. [4]

      Yang Yang Jing-Li Luo Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269

    5. [5]

      Fabrice Nelly HabarugiraDucheng YaoWei MiaoChengcheng ChuZhong ChenShun Mao . Synergy of sodium doping and nitrogen defects in carbon nitride for promoted photocatalytic synthesis of hydrogen peroxide. Chinese Chemical Letters, 2024, 35(8): 109886-. doi: 10.1016/j.cclet.2024.109886

    6. [6]

      Shiyu PanBo CaoDeling YuanTifeng JiaoQingrui ZhangShoufeng Tang . Complexes of cupric ion and tartaric acid enhanced calcium peroxide Fenton-like reaction for metronidazole degradation. Chinese Chemical Letters, 2024, 35(7): 109185-. doi: 10.1016/j.cclet.2023.109185

    7. [7]

      Tiantian LiRuochen JinBin WuDongming LanYunjian MaYonghua Wang . A novel insight of enhancing the hydrogen peroxide tolerance of unspecific peroxygenase from Daldinia caldariorum based on structure. Chinese Chemical Letters, 2024, 35(4): 108701-. doi: 10.1016/j.cclet.2023.108701

    8. [8]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    9. [9]

      Guihuang FangWei ChenHongwei YangHaisheng FangChuang YuMaoxiang Wu . Improved performance of LiMn0.8Fe0.2PO4 by addition of fluoroethylene carbonate electrolyte additive. Chinese Chemical Letters, 2024, 35(6): 108799-. doi: 10.1016/j.cclet.2023.108799

    10. [10]

      Weijian ZhangXianyu DengLiying WangJian WangXiuting GuoLianggui HuangXinyi WangJun WuLinjia Jiang . Poly(ferulic acid) nanocarrier enhances chemotherapy sensitivity of acute myeloid leukemia by selectively targeting inflammatory macrophages. Chinese Chemical Letters, 2024, 35(9): 109422-. doi: 10.1016/j.cclet.2023.109422

    11. [11]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

    12. [12]

      Zhenjie YangChenyang HuXuan PangXuesi Chen . Sequence design in terpolymerization of ε-caprolactone, CO2 and cyclohexane oxide: Random ester-carbonate distributions lead to large-span tunability. Chinese Chemical Letters, 2024, 35(5): 109340-. doi: 10.1016/j.cclet.2023.109340

    13. [13]

      Zhili LiQijun WoDongdong HuangDezhong ZhouLei GuoYeqing Mao . Improving gene transfection efficiency of highly branched poly(β-amino ester)s through the in-situ conversion of inactive terminal groups. Chinese Chemical Letters, 2024, 35(8): 109737-. doi: 10.1016/j.cclet.2024.109737

    14. [14]

      Kunyao PengXianbin WangXingbin Yan . Converting LiNO3 additive to single nitrogenous component Li2N2O2 SEI layer on Li metal anode in carbonate-based electrolyte. Chinese Chemical Letters, 2024, 35(9): 109274-. doi: 10.1016/j.cclet.2023.109274

    15. [15]

      Zhenchun YangBixiao GuoZhenyu HuKun WangJiahao CuiLina LiChun HuYubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251

Metrics
  • PDF Downloads(0)
  • Abstract views(544)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return