Citation: Da-Shan Mi, Feng-Yi Hou, Man Zhou, Jie Zhang. Distribution of α-, β-, and γ-Phases in a Multi-flow Injection-molded Hierarchical Structure[J]. Chinese Journal of Polymer Science, ;2018, 36(6): 765-775. doi: 10.1007/s10118-018-2057-3 shu

Distribution of α-, β-, and γ-Phases in a Multi-flow Injection-molded Hierarchical Structure

  • Corresponding author: Jie Zhang, zhangjie@scu.edu.cn
  • Received Date: 9 September 2017
    Accepted Date: 7 October 2017
    Available Online: 26 February 2018

  • In the current work, a custom-made vibration injection molding device that can provide oscillatory pressure was utilized to create an injection-molded hierarchical structure. Growth competition among α, β, and γ phases in the injection-molded structure can be studied because of the presence of this hierarchical structure, wherein shish-kebab and spherulite layers were arranged alternately along the thickness direction. The γ crystals only existed in layers subjected to high pressure and shear stress, whereas β crystals formed between the shear layers. The change in trend of the γ fraction was similar to that of parent-to-daughter ratio. In addition, this hierarchical and alternating crystal structure can sharply increase the mechanical properties.
  • 加载中
    1. [1]

      Lotz B., Wittmann J. C., Lovinger A. J.. Structure and morphology of poly (propylenes):a molecular analysis[J]. Polymer, 1996,37(22):4979-4992. doi: 10.1016/0032-3861(96)00370-9

    2. [2]

      And E. L., Bartczak Z.. Plastic deformation of the γ phase isotactic polypropylene in plane-strain compression at elevated temperatures[J]. Macromolecules, 2007,40(14):4933-4941. doi: 10.1021/ma0708038

    3. [3]

      Somani R. H., Hsiao B. S., Nogales A., Fruitwala H., Srinivas S., Tsou A. H.. Structure development during shear flow induced crystallization of i-PP:in situ wide-angle X-ray diffraction study[J]. Macromolecules, 2001,34(17):5902-5909. doi: 10.1021/ma0106191

    4. [4]

      Mao Y., Burger C., Zuo F., Hsiao B. S., Mehta A., Mitchell C., Tsou A. H.. Wide-angle X-ray scattering study on shear-induced crystallization of propylene-1-butylene random copolymer:experiment and diffraction pattern simulation[J]. Macromolecules, 2011,44(3):558-565. doi: 10.1021/ma102342c

    5. [5]

      Zhang Y., Zhang L., Liu H., Du H., Zhang J., Wang T., Zhang X.. Novel approach to tune mechanics of β-nucleation agent nucleated polypropylene:role of oriented β spherulite[J]. Polymer, 2013,54(21):6026-6035. doi: 10.1016/j.polymer.2013.08.024

    6. [6]

      Foresta T., Piccarolo S., Goldbeck-Wood G.. Competition between α and γ phases in isotactic polypropylene:effects of ethylene content and nucleating agents at different cooling rates[J]. Polymer, 2001,42(3):1167-1176. doi: 10.1016/S0032-3861(00)00404-3

    7. [7]

      Bai H., Wang Y., Zhang Z., Han L., Li Y., Liu L., Zhou Z., Men Y.. Influence of annealing on microstructure and mechanical properties of isotactic polypropylene with β-phase nucleating agent[J]. Macromolecules, 2009,42(17):6647-6655. doi: 10.1021/ma9001269

    8. [8]

      Varga J., Menyhárd A.. Effect of solubility and nucleating duality of N, N'-dicyclohexyl-2, 6-naphthalenedicarboxamide on the supermolecular structure of isotactic polypropylene[J]. Macromolecules, 2007,40(7):2422-2431. doi: 10.1021/ma062815j

    9. [9]

      Tordjeman P., Robert C., Marin G., Gerard P.. The effect of α, β crystalline structure on the mechanical properties of polypropylene[J]. Eur. Phys. J. E, 2001,4(4):459-465. doi: 10.1007/s101890170101

    10. [10]

      Meille S. V., Bruckner S., Porzio W.. γ-Isotactic polypropylene[J]. A structure with nonparallel chain axes. Macromolecules, 1990,23(18):4114-4121.  

    11. [11]

      de Rosa C., Auriemma F., Paolillo M., Resconi L., Camurati I.. Crystallization behavior and mechanical properties of regiodefective, highly stereoregular isotactic polypropylene:effect of regiodefects versus stereodefects and influence of the molecular mass[J]. Macromolecules, 2005,38(22):9143-9154. doi: 10.1021/ma051004x

    12. [12]

      De Rosa C., Auriemma F., Ruiz de Ballesteros O., Resconi L., Camurati I.. Tailoring the physical properties of isotactic polypropylene through incorporation of comonomers and the precise control of stereo-and regioregularity by metallocene catalysts[J]. Chem. Mater., 2007,19(21):5122-5130. doi: 10.1021/cm071502f

    13. [13]

      Polt G., Spieckermann F., Wilhelm H., Kerber M., Schafler E., Bernstorff S., Zehetbauer M.. The role of dislocations in γ-iPP under plastic deformation investigated by X-ray line profile analysis[J]. Mech. Mater, 2013,67:126-132. doi: 10.1016/j.mechmat.2013.05.010

    14. [14]

      Meille S. V., Ferro D. R., Brückner S., Lovinger A. J., Padden F. J.. Structure of beta.-isotactic polypropylene:a long-standing structural puzzle[J]. Macromolecules, 1994,27(9):2615-2622. doi: 10.1021/ma00087a034

    15. [15]

      Asano T., Fujiwara Y., Yoshida T.. Plastic deformation of oriented lamellae. Ⅱ. Hot rolling of β-phase isotactic polypropylene[J]. Polym. J., 1979,11(5):383-390. doi: 10.1295/polymj.11.383

    16. [16]

      Somani R. H., Hsiao B. S., Nogales A., Srinivas S., Tsou A. H., Sics I., Balta-Calleja F. J., Ezquerra T. A.. Structure development during shear flow-induced crystallization of i-PP:in situ small-angle X-ray scattering study[J]. Macromolecules, 2000,33(25):9385-9394. doi: 10.1021/ma001124z

    17. [17]

      Luo B., Li H., Zhou C., Zhang W., Li J., He X., Jiang S.. Mechanistic insights into the shear-induced β-form crystal formation of iPP[J]. Macromol. Chem. Phys., 2016,217(12):1354-1360. doi: 10.1002/macp.v217.12

    18. [18]

      Sun X., Li H., Lieberwirth I., Yan S.. α and β interfacial structures of the iPP/PET matrix/fiber systems[J]. Macromolecules, 2007,40(23):8244-8249. doi: 10.1021/ma071382x

    19. [19]

      Chen Y. H., Mao Y. M., Li Z. M., Hsiao B. S.. Competitive growth of α-and β-crystals in β-nucleated isotactic polypropylene under shear flow[J]. Macromolecules, 2010,43(16):6760-6771. doi: 10.1021/ma101006e

    20. [20]

      Su R., Zhang Z., Gao X., Ge Y., Wang K., Fu Q.. Polypropylene injection molded part with novel macroscopic bamboo-like bionic structure[J]. J. Phys. Chem. B, 2010,114(31):9994-10001. doi: 10.1021/jp1020802

    21. [21]

      Liu X., Dai K., Hao X., Zheng G., Liu C., Schubert D. W., Shen C.. Crystalline structure of injection molded β-isotactic Polypropylene:analysis of the oriented shear zone[J]. Ind. Eng. Chem. Res., 2013,52(34):11996-12002. doi: 10.1021/ie401162c

    22. [22]

      Li H., Yan S.. Surface-induced polymer crystallization and the resultant structures and morphologies[J]. Macromolecules, 2011,44(3):417-428. doi: 10.1021/ma1023457

    23. [23]

      Qin Y., Xu Y., Zhang L., Zheng G., Yan X., Dai K., Liu C., Shen C., Guo Z.. Interfacial interaction enhancement by shear-induced β-cylindrite in isotactic polypropylene/glass fiber composites[J]. Polymer, 2016,100:111-118. doi: 10.1016/j.polymer.2016.08.016

    24. [24]

      Li H., Jiang S., Wang J., Wang D., Yan S.. Optical microscopic study on the morphologies of isotactic polypropylene induced by its homogeneity fibers[J]. Macromolecules, 2003,36(8):2802-2807. doi: 10.1021/ma034062w

    25. [25]

      Sun X., Li H., Zhang X., Wang J., Wang D., Yan S.. Effect of fiber molecular weight on the interfacial morphology of iPP fiber/matrix single polymer composites[J]. Macromolecules, 2006,39(3):1087-1092. doi: 10.1021/ma0521102

    26. [26]

      Sun X., Li H., Wang J., Yan S.. Shear-induced interfacial structure of isotactic polypropylene (iPP) in iPP/fiber composites[J]. Macromolecules, 2006,39(25):8720-8726. doi: 10.1021/ma062105d

    27. [27]

      Alamo R. G., Kim M. H., Galante M. J., Isasi J. R., Mandelkern L.. Structural and kinetic factors governing the formation of the γ polymorph of isotactic polypropylene[J]. Macromolecules, 1999,32(12):4050-4064. doi: 10.1021/ma981849r

    28. [28]

      Addink E., Beintema J.. Polymorphism of crystalline polypropylene[J]. Polymer, 1961,2:185-193. doi: 10.1016/0032-3861(61)90021-0

    29. [29]

      Meille S. V., Phillips P. J., Mezghani K., Brückner S.. α-γ disorder in isotactic polypropylene crystallized under high pressure[J]. Macromolecules, 1996,29(2):795-797. doi: 10.1021/ma951168l

    30. [30]

      Mezghani K., Phillips P. J.. The γ-phase of high molecular weight isotactic polypropylene:Ⅲ. The equilibrium melting point and the phase diagram[J]. Polymer, 1998,39(16):3735-3744.  

    31. [31]

      van Erp T. B., Balzano L., Peters G. W.. Oriented gamma phase in isotactic polypropylene homopolymer[J]. ACS Macro Lett., 2012,1(5):618-622. doi: 10.1021/mz3000978

    32. [32]

      van Erp T. B., Balzano L., Spoelstra A. B., Govaert L. E., Peters G. W.. Quantification of non-isothermal, multi-phase crystallization of isotactic polypropylene:The influence of shear and pressure[J]. Polymer, 2012,53(25):5896-5908. doi: 10.1016/j.polymer.2012.10.027

    33. [33]

      Yang S. G., Zhang Z., Zhang L. Q., Zhou D., Wang Y., Lei J., Li L., Li Z. M.. Unexpected shear dependence of pressure-induced γ-crystals in isotactic polypropylene[J]. Polym. Chem., 2015,6(25):4588-4596. doi: 10.1039/C5PY00339C

    34. [34]

      An Y., Gu L., Wang Y., Li Y. M., Yang W., Xie B. H., Yang M. B.. Morphologies of injection molded isotactic polypropylene/ultra high molecular weight polyethylene blends[J]. Mater. Design, 2012,35:633-639. doi: 10.1016/j.matdes.2011.10.017

    35. [35]

      Liu X., Pan Y., Peng C., Hao X., Zheng G., Schubert D. W., Liu C., Shen C.. Twisted lamellae in water-assisted injection molded high density polyethylene[J]. Mater. Lett., 2016,172:19-22. doi: 10.1016/j.matlet.2016.02.127

    36. [36]

      Kalay G., Bevis M. J.. Processing and physical property relationships in injection-molded isotactic polypropylene. 1. Mechanical properties[J]. J. Polym. Sci., Part B:Polym. Phys., 1997,35(2):241-263. doi: 10.1002/(ISSN)1099-0488

    37. [37]

      Chen Y. H., Zhong G. J., Wang Y., Li Z. M., Li L.. Unusual tuning of mechanical properties of isotactic polypropylene using counteraction of shear flow and β-nucleating agent on β-form nucleation[J]. Macromolecules, 2009,42(12):4343-4348. doi: 10.1021/ma900411f

    38. [38]

      Zhou M., Li X. P., Jin M., Xia C., Shen K. Z., Zhang J.. Simultaneously improving the tensile and impact properties of isotactic polypropylene with the cooperation of co-PP and β-nucleating agent through pressure vibration injection molding[J]. Chinese J. Polym. Sci., 2016,34(8):1001-1013. doi: 10.1007/s10118-016-1814-4

    39. [39]

      Chen Y. H., Huang Z. Y., Li Z. M., Tang J. H., Hsiao B. S.. Simultaneous improvement of strength and toughness in fiber reinforced isotactic polypropylene composites by shear flow and a β-nucleating agent[J]. RSC Adv., 2014,4(28):14766-14776. doi: 10.1039/C3RA47990K

    40. [40]

      Mi D., La R., Wang T., Zhang X., Zhang J.. Hierarchic structure and mechanical property of glass fiber reinforced isotactic polypropylene composites molded by multiflow vibration injection molding, Polym[J]. Compos., 2017,38(12):2707-2717.  

    41. [41]

      Mi D., Xia C., Jin M., Wang F., Shen K., Zhang J.. Quantification of the effect of shish-kebab structure on the mechanical properties of polypropylene samples by controlling shear layer thickness[J]. Macromolecules, 2016,49(12):4571-4578. doi: 10.1021/acs.macromol.6b00822

    42. [42]

      Turner-Jones A., Cobbold A.. The β crystalline form of isotactic polypropylene[J]. J. Polym. Sci., Part B:Polym. Lett., 1968,6(8):539-546. doi: 10.1002/pol.1968.110060802

    43. [43]

      Mezghani K., Phillips P. J.. γ-Phase in propylene copolymers at atmospheric pressure[J]. Polymer, 1995,36(12):2407-2411. doi: 10.1016/0032-3861(95)97341-C

    44. [44]

      Somani R. H., Yang L., Hsiao B. S., Sun T., Pogodina N. V., Lustiger A.. Shear-induced molecular orientation and crystallization in isotactic polypropylene:Effects of the deformation rate and strain[J]. Macromolecules, 2005,38(4):1244-1255. doi: 10.1021/ma048285d

    45. [45]

      Heeley E. L., Hughes D. J., Crabb E. M., Bowen J., Bikondoa O., Mayoral B., Leung S., McNally T.. The formation of a nanohybrid shish-kebab (NHSK) structure in melt-processed composites of poly(ethylene terephthalate) (PET) and multi-walled carbon nanotubes (MWCNTs)[J]. Polymer, 2017,117:208-219. doi: 10.1016/j.polymer.2017.04.033

    46. [46]

      Liu K., Zhang J., Liu H., Qian X., Zhang Y., Wang T., Shen K.. A multi-layer bioinspired design with evolution of shish-kebab structures induced by controlled periodical shear field[J]. Express Polym. Lett., 2013,7(4):355-364.  

    47. [47]

      Balzano L., Ma Z., Cavallo D., van Erp T. B., Fernandez-Ballester L., Peters G. W.. Molecular aspects of the formation of shish-kebab in isotactic polypropylene[J]. Macromolecules, 2016,49(10):3799-3809. doi: 10.1021/acs.macromol.6b00428

    48. [48]

      Schrauwen B., von Breemen L., Spoelstra A., Govaert L., Peters G., Meijer H.. Structure, deformation, and failure of flow-oriented semicrystalline polymers[J]. Macromolecules, 2004,37(23):8618-8633. doi: 10.1021/ma048884k

    49. [49]

      Tian Y., Zhu C., Gong J., Yang S., Ma J., Xu J.. Lamellae break induced formation of shish-kebab during hot stretching of ultra-high molecular weight polyethylene precursor fibers investigated by in situ small angle X-ray scattering[J]. Polymer, 2014,55(16):4299-4306. doi: 10.1016/j.polymer.2014.06.056

    50. [50]

      Lotz B., Graff S., Straupe C., Wittmann J.. Single crystals of γ phase isotactic polypropylene:combined diffraction and morphological support for a structure with non-parallel chains[J]. Polymer, 1991,32(16):2902-2910. doi: 10.1016/0032-3861(91)90185-L

    51. [51]

      de Rosa C., Auriemma F., De Ballesteros O. R., Resconi L., Camurati I.. Crystallization behavior of isotactic propyleneethylene and propylene-butene copolymers:effect of comonomers versus stereodefects on crystallization properties of isotactic polypropylene[J]. Macromolecules, 2007,40(18):6600-6616. doi: 10.1021/ma070409+

    52. [52]

      Auriemma F., De Rosa C.. Crystallization of metallocene-made isotactic polypropylene:disordered modifications intermediate between the α and γ forms[J]. Macromolecules, 2002,35(24):9057-9068. doi: 10.1021/ma020648r

    53. [53]

      de Rosa C., Auriemma F., Spera C., Talarico G., Tarallo O.. Comparison between polymorphic behaviors of Ziegler-Natta and metallocene-made isotactic polypropylene:the role of the distribution of defects in the polymer chains[J]. Macromolecules, 2004,37(4):1441-1454. doi: 10.1021/ma035295q

    54. [54]

      de Rosa C., Auriemma F., Di Capua A., Resconi L., Guidotti S., Camurati I., Nifant'ev I. E., Laishevtsev I. P.. Structureproperty correlations in polypropylene from metallocene catalysts:stereodefective, regioregular isotactic polypropylene[J]. J. Am. Chem. Soc., 2004,126(51):17040-17049. doi: 10.1021/ja045684f

    55. [55]

      Brückner S., Phillips P. J., Mezghani K., Meille S. V.. On the crystallization of γ-isotactic polypropylene:a high pressure study[J]. Macromol. Rapid Commun., 1997,18(1):1-7. doi: 10.1002/marc.1997.030180101

    56. [56]

      Liu Z., Liu X., Zheng G., Dai K., Liu C., Shen C., Yin R., Guo Z.. Mechanical enhancement of melt-stretched β-nucleated isotactic polypropylene:The role of lamellar branching of β-crystal[J]. Polym. Test., 2017,58:227-235. doi: 10.1016/j.polymertesting.2017.01.002

  • 加载中
    1. [1]

      Pengcheng SuShizheng ChenZhihong YangNingning ZhongChenzi JiangWanbin Li . Vapor-phase postsynthetic amination of hypercrosslinked polymers for efficient iodine capture. Chinese Chemical Letters, 2024, 35(9): 109357-. doi: 10.1016/j.cclet.2023.109357

    2. [2]

      Ce LiangQiuhui SunAdel Al-SalihyMengxin ChenPing Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306

    3. [3]

      Shengyu ZhaoQinhao ShiWuliang FengYang LiuXinxin YangXingli ZouXionggang LuYufeng Zhao . Suppression of multistep phase transitions of O3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(5): 108606-. doi: 10.1016/j.cclet.2023.108606

    4. [4]

      Xue XinQiming QuIslam E. KhalilYuting HuangMo WeiJie ChenWeina ZhangFengwei HuoWenjing Liu . Hetero-phase zirconia encapsulated with Au nanoparticles for boosting electrocatalytic nitrogen reduction. Chinese Chemical Letters, 2024, 35(5): 108654-. doi: 10.1016/j.cclet.2023.108654

    5. [5]

      Tian YangYi LiuLina HuaYaoyao ChenWuqian GuoHaojie XuXi ZengChanghao GaoWenjing LiJunhua LuoZhihua Sun . Lead-free hybrid two-dimensional double perovskite with switchable dielectric phase transition. Chinese Chemical Letters, 2024, 35(6): 108707-. doi: 10.1016/j.cclet.2023.108707

    6. [6]

      Shu LinKezhen Qi . Phase-dependent lithium-alloying reactions for lithium-metal batteries. Chinese Chemical Letters, 2024, 35(4): 109431-. doi: 10.1016/j.cclet.2023.109431

    7. [7]

      Wangyan HuKe LiXiangnan DouNing LiXiayan Wang . Nano-sized stationary phase packings retained by single-particle frit for microchip liquid chromatography. Chinese Chemical Letters, 2024, 35(4): 108806-. doi: 10.1016/j.cclet.2023.108806

    8. [8]

      Zhaohong ChenMengzhen LiJinfei LanShengqian HuXiaogang Chen . Organic ferroelastic enantiomers with high Tc and large dielectric switching ratio triggered by order-disorder and displacive phase transition. Chinese Chemical Letters, 2024, 35(10): 109548-. doi: 10.1016/j.cclet.2024.109548

    9. [9]

      Zhi-Yuan YueHua-Kai LiNa WangShan-Shan LiuLe-Ping MiaoHeng-Yun YeChao Shi . Dehydration-triggered structural phase transition-associated ferroelectricity in a hybrid perovskite-type crystal. Chinese Chemical Letters, 2024, 35(10): 109355-. doi: 10.1016/j.cclet.2023.109355

    10. [10]

      Zhuoer Cai Yinan Zhang Xiu-Ni Hua Baiwang Sun . Phase transition arising from order-disorder motion in stable layered two-dimensional perovskite. Chinese Journal of Structural Chemistry, 2024, 43(11): 100426-100426. doi: 10.1016/j.cjsc.2024.100426

    11. [11]

      Shuangying LiQingxiang ZhouZhi LiMenghua LiuYanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693

    12. [12]

      Le Ye Wei-Xiong Zhang . Structural phase transition in a new organic-inorganic hybrid post-perovskite: (N,N-dimethylpyrrolidinium)[Mn(N(CN)2)3]. Chinese Journal of Structural Chemistry, 2024, 43(6): 100257-100257. doi: 10.1016/j.cjsc.2024.100257

    13. [13]

      Yang LiuYan LiuKaiyin YangZhiruo ZhangWenbo ZhangBingyou YangHua LiLixia Chen . A selective HK2 degrader suppresses SW480 cancer cell growth by degrading HK2. Chinese Chemical Letters, 2024, 35(8): 109264-. doi: 10.1016/j.cclet.2023.109264

    14. [14]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

Metrics
  • PDF Downloads(0)
  • Abstract views(551)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return