Citation: Yi-Ran Zhang, Ji-Xing Yang, Li Pan, Yue-Sheng Li. Synthesis of High Performance Cyclic Olefin Polymers Using Highly Efficient WCl6-based Catalyst System[J]. Chinese Journal of Polymer Science, ;2018, 36(2): 214-221. doi: 10.1007/s10118-018-2055-5 shu

Synthesis of High Performance Cyclic Olefin Polymers Using Highly Efficient WCl6-based Catalyst System

  • Corresponding author: Li Pan, lilypan@tju.edu.cn
  • Received Date: 15 September 2017
    Accepted Date: 2 October 2017
    Available Online: 21 November 2017

  • Cyclic olefin polymers (COPs) with high glass transition temperature, high transparency (higher than 80%) in the visible light range, excellent thermal stability and outstanding mechanical properties have been synthesized by effective ring opening metathesis polymerization (ROMP) of exo-1, 4, 4a, 9, 9a, 10-hexahydro-9, 10(1', 2')-benzeno-l, 4-methanoanthracene (HBM) and dicyclopentadiene (DCPD) or norbornene (NBE) using WCl6/i-Bu3Al/ethanol/1-hexene catalyst system, followed by hydrogenation of double bonds. 1-Hexene acted as a molecular weight controller in the polymerization reaction, tuning the number-average molecular weight (Mn) of P-HBM from 5.8×104 to 41.1×104. The monomer composition and thermal properties of the copolymers were characterized by nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The saturated polymers exhibited high decomposition temperatures (Td) around 340℃ and glass transition temperatures (Tg) in the range from 117.5℃ to 219.7℃. What is more, tensile tests indicated that the mechanical properties of the COPs could be effectively tuned in a wide range by introducing varying amount of small cyclic olefin such as DCPD or NBE.
  • 加载中
    1. [1]

      Khanarian G.. Optical properties of cyclic olefin copolymers[J]. Opt. Eng., 2001,40(6):1024-1029. doi: 10.1117/1.1369411

    2. [2]

      Shin J. Y., Park J. Y., Liu C. Y., He J.S., Kim S. C.. Chemical structure and physical properties of cyclic olefin copolymers (IUPAC technical report)[J]. Pure Appl. Chem., 2005,77(5):801-814.  

    3. [3]

      Mol J. C.. Industrial applications of olefin metathesis[J]. J. Mol. Catal. A:Chem., 2004,213(1):39-45. doi: 10.1016/j.molcata.2003.10.049

    4. [4]

      Nunes P., Ohlsson P., Ordeig O., Kutter J.. Cyclic olefin polymers:Emerging materials for lab-on-a-chip applications[J]. Microfluid. Nanofluid., 2010,9(2-3):145-161. doi: 10.1007/s10404-010-0605-4

    5. [5]

      Pan L., Liu J. Y., Ye W. P., Hong M., Li Y.S.. Efficient, regioselective copolymerization of ethylene with cyclopentadiene by the titanium complexes bearing two β-enaminoketonato ligands[J]. Macromolecules, 2008,41(9):2981-2983. doi: 10.1021/ma800459r

    6. [6]

      Li Y. L., Yang J. X., Wang B., Li Y. S.. Efficient copolymerization of ethylene with norbornene or its derivatives using half-metallocene zirconium(Ⅳ) catalysts[J]. RSC Adv., 2016,6(64):59590-59599. doi: 10.1039/C6RA11501B

    7. [7]

      Li X. F., Hou Z. M.. Organometallic catalysts for copolymerization of cyclic olefins[J]. Coord. Chem. Rev., 2008,252(15-17):1842-1869. doi: 10.1016/j.ccr.2007.11.027

    8. [8]

      Shiono T., Sugimoto M., Hasan T., Cai Z. G., Ikeda T.. Random copolymerization of norbornene with higher 1-alkene with ansa-fluorenylamidodimethyltitanium catalyst[J]. Macromolecules, 2008,41(22):8292-8294. doi: 10.1021/ma802119d

    9. [9]

      Liu J. Y., Nomura K.. Highly efficient ethylene/cyclopentene copolymerization with exclusive 1, 2-cyclopentene incorporation by (cyclopentadienyl)-(ketimide)titanium(Ⅳ) complex-MAO catalysts[J]. Adv. Synth. Catal., 2007,349(14-15):2235-2240. doi: 10.1002/(ISSN)1615-4169

    10. [10]

      Li X. F., Baldamus J., Hou Z. M.. Alternating ethylene-norbornene copolymerization catalyzed by cationic half-sandwich scandium complexes[J]. Angew. Chem. Int. Ed., 2005,44(6):962-965. doi: 10.1002/(ISSN)1521-3773

    11. [11]

      Okaniwa M., Kawashima N., Kaizu M., Mutsuga Y.. Birefringence control by hydrogen bonding on compatible polymer pair composed of hydrogenated ring-opening polymer and modified polystyrene[J]. J. Polym. Sci., Part A:Polym. Chem., 2013,51(15):3132-3143. doi: 10.1002/pola.26697

    12. [12]

      Cui J., Yang J. X., Li Y. G., Li Y. S.. Synthesis of high performance cyclic olefin polymers (COPs) with ester group via ring-opening metathesis polymerization[J]. Polymers, 2015,7(8):1389-1409. doi: 10.3390/polym7081389

    13. [13]

      Park E. S., Park J. H., Jeon J., Sung J. U., Hwang W. S., Lee B. Y.. Ring-opening metathesis polymerization of dicyclopentadiene and tricyclopentadiene[J]. Macromol. Res., 2013,21(1):114-117. doi: 10.1007/s13233-012-0190-3

    14. [14]

      Cui J., Yang J. X., Pan L., Li Y. S.. Synthesis of novel cyclic olefin polymer with high glass transition temperature via ring-opening metathesis polymerization[J]. Macromol. Chem. Phys., 2016,217(24):2708-2716. doi: 10.1002/macp.v217.24

    15. [15]

      Yu S. T., Na S. J., Lim T. S., Lee B. Y.. Preparation of a bulky cycloolefin/ethylene copolymer and its tensile properties[J]. Macromolecules, 2010,43(2):725-730. doi: 10.1021/ma902334d

    16. [16]

      Cai Z. G., Harada R., Nakayama Y., Shiono T.. Highly active living random copolymerization of norbornene and 1-alkene with ansa-fluorenylamidodimethyltitanium derivative:substituent effects on fluorenyl ligand[J]. Macromolecules, 2010,43(10):4527-4531. doi: 10.1021/ma1006107

    17. [17]

      Liu M. O., Lin H. F., Yang M. C., Lai M. J., Chang C. C., Shiao P. L., Chen I. M., Chen J.Y.. Thermal, dynamic mechanical and rheological properties of metallocene-catalyzed cycloolefin copolymers (mCOCs) with high glass transition temperature[J]. Mater. Lett., 2007,61(2):457-462. doi: 10.1016/j.matlet.2006.04.085

    18. [18]

      Rische T., Waddon A. J., Dickinson L. C., MacKnight W. J.. Microstructure and morphology of cycloolefin copolymers[J]. Macromolecules, 1998,31(6):1871-1874. doi: 10.1021/ma971067i

    19. [19]

      Park H. C., Kim A., Lee B. Y.. Preparation of cycloolefin copolymers of a bulky tricyclopentadiene[J]. J. Polym. Sci., Part A:Polym. Chem., 2011,49(4):938-944. doi: 10.1002/pola.24506

    20. [20]

      Hong M., Yang G. F., Long Y. Y., Yu S. J., Li Y. S.. Preparation of novel cyclic olefin copolymer with high glass transition temperature[J]. J. Polym. Sci., Part A:Polym. Chem., 2013,51(15):3144-3152. doi: 10.1002/pola.26699

    21. [21]

      Kaminsky W., Engehausen R., Kopf J.. A tailor-made metallocene for the copolymerization of ethene with bulky cycloalkenes[J]. Angew. Chem. Int. Ed., 1995,34(20):2273-2275. doi: 10.1002/(ISSN)1521-3773

    22. [22]

      Hong M., Cui L., Liu S. R., Li Y. S.. Synthesis of novel cyclic olefin copolymer (COC) with high performance via eff ective copolymerization of ethylene with bulky cyclic olefin[J]. Macromolecules, 2012,45(13):5397-5402. doi: 10.1021/ma300730y

    23. [23]

      Yang J. X., Cui J., Long Y. Y., Li Y. G., Li Y. S.. Synthesis of novel cyclic olefin polymers with excellent transparency and high glass-transition temperature via gradient copolymerization of bulky cyclic olefin and cis-cyclooctene[J]. J. Polym. Sci., Part A:Polym. Chem., 2014,52(22):3240-3249. doi: 10.1002/pola.v52.22

    24. [24]

      Yang J. X., Cui J., Long Y. Y., Li Y. G., Li Y. S.. Synthesis of cyclic olefin polymers with high glass transition temperature by ring-opening metathesis copolymerization and subsequent hydrogenation[J]. J. Polym. Sci., Part A:Polym. Chem., 2014,52(18):2654-2661. doi: 10.1002/pola.v52.18

    25. [25]

      Kim J., Wu C. J., Kim W. J., Kim J., Lee H., Kim J. D.. Ring-opening metathesis polymerization of tetracyclododecene using various catalyst systems[J]. J. Appl. Polym. Sci., 2010,116(1):479-485. doi: 10.1002/app.v116:1

    26. [26]

      Widyaya V. T., Vo H. T., Putra R. D. D., Hwang W. S., Ahn B. S., Lee H.. Preparation and characterization of cycloolefin polymer based on dicyclopentadiene (DCPD) and dimethanoocta hydronaphthalene (DMON)[J]. Eur. Polym. J., 2013,49(9):2680-2688. doi: 10.1016/j.eurpolymj.2013.05.022

    27. [27]

      Kwon O. J., Vo H. T., Lee S. B., Kim T. K., Kim H. S., Lee H.. Ring-opening metathesis polymerization and hydrogenation of ethyl-substituted tetracyclododecene[J]. Bull. Korean. Chem. Soc., 2011,32(8):2737-2742. doi: 10.5012/bkcs.2011.32.8.2737

    28. [28]

      Paddon-Row M. N., Hartcher R.. Orbital interactions. 7. The birch reduction as a tool for exploring orbital interactions through bonds. Through-four-, -five-, and -six-bond interactions[J]. J. Am. Chem. Soc., 1980,102(2):671-678.  

    29. [29]

      Bielawski C. W., Grubbs R. H.. Living ring-opening metathesis polymerization[J]. Prog. Polym. Sci., 2007,32(1):1-29. doi: 10.1016/j.progpolymsci.2006.08.006

    30. [30]

      Alley W. M., Hamdemir I. K., Wang Q., Frenkel A. I., Li L., Yang J. C., Menard L. D., Nuzzo R. G., Ozkar S., Yih K. H., Johnson K. A., Finke R. G.. Industrial Ziegler-type hydrogenation catalysts made from Co(neodecanoate)2 or Ni(2-ethylhexanoate)2 and AlEt3:evidence for nanoclusters and sub-nanocluster or larger Ziegler-nanocluster based catalysis[J]. Langmuir, 2011,27(10):6279-6294. doi: 10.1021/la200053f

  • 加载中
    1. [1]

      Lingyun ShenShenxiang YinQingshu ZhengZheming SunWei WangTao Tu . A rechargeable and portable hydrogen storage system grounded on soda water. Chinese Chemical Letters, 2025, 36(3): 110580-. doi: 10.1016/j.cclet.2024.110580

    2. [2]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    3. [3]

      Yue SunLiming YangYaohang ChengGuanghui AnGuangming Li . Pd(I)-catalyzed ring-opening arylation of cyclopropyl-α-aminoamides: Access to α-ketoamide peptidomimetics. Chinese Chemical Letters, 2024, 35(6): 109250-. doi: 10.1016/j.cclet.2023.109250

    4. [4]

      Dongmei YaoJunsheng ZhengLiming JinXiaomin MengZize ZhanRunlin FanCong FengPingwen Ming . Effect of surface oxidation on the interfacial and mechanical properties in graphite/epoxy composites composite bipolar plates. Chinese Chemical Letters, 2024, 35(11): 109382-. doi: 10.1016/j.cclet.2023.109382

    5. [5]

      Qinghong ZhangQiao ZhaoXiaodi WuLi WangKairui ShenYuchen HuaCheng GaoYu ZhangMei PengKai Zhao . Visible-light-induced ring-opening cross-coupling of cycloalcohols with vinylazaarenes and enones via β-C-C scission enabled by proton-coupled electron transfer. Chinese Chemical Letters, 2025, 36(2): 110167-. doi: 10.1016/j.cclet.2024.110167

    6. [6]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    7. [7]

      Rui HUANGShengjie LIUQingyuan WUNanfeng ZHENG . Enhanced selectivity of catalytic hydrogenation of halogenated nitroaromatics by interfacial effects. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 201-212. doi: 10.11862/CJIC.20240356

    8. [8]

      Yi LiuPeng LeiYang FengShiwei FuXiaoqing LiuSiqi ZhangBin TuChen ChenYifan LiLei WangQing-Dao Zeng . Topologically engineering of π-conjugated macrocycles: Tunable emission and photochemical reaction toward multi-cyclic polymers. Chinese Chemical Letters, 2024, 35(10): 109571-. doi: 10.1016/j.cclet.2024.109571

    9. [9]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    10. [10]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    11. [11]

      Shaoming DongYiming NiuYinghui PuYongzhao WangBingsen Zhang . Subsurface carbon modification of Ni-Ga for improved selectivity in acetylene hydrogenation reaction. Chinese Chemical Letters, 2024, 35(12): 109525-. doi: 10.1016/j.cclet.2024.109525

    12. [12]

      Jinyuan Cui Tingting Yang Teng Xu Jin Lin Kunlong Liu Pengxin Liu . Hydrogen spillover enhances the selective hydrogenation of α,β-unsaturated aldehydes on the Cu-O-Ce interface. Chinese Journal of Structural Chemistry, 2025, 44(1): 100438-100438. doi: 10.1016/j.cjsc.2024.100438

    13. [13]

      Peipei CUIXin LIYilin CHENZhilin CHENGFeiyan GAOXu GUOWenning YANYuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234

    14. [14]

      Ying-Yu ZhangJia-Qi LuoYan HanWan-Ying ZhangYi ZhangHai-Feng LuDa-Wei Fu . Bistable switch molecule DPACdCl4 showing four physical channels and high phase transition temperature. Chinese Chemical Letters, 2025, 36(1): 109530-. doi: 10.1016/j.cclet.2024.109530

    15. [15]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    16. [16]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    17. [17]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    18. [18]

      Long TANGYaxin BIANLuyuan CHENXiangyang HOUXiao WANGJijiang WANG . Syntheses, structures, and properties of three coordination polymers based on 5-ethylpyridine-2,3-dicarboxylic acid and N-containing ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1975-1985. doi: 10.11862/CJIC.20240180

    19. [19]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    20. [20]

      Ruixue LiuXiaobing DingQiwei LangGen-Qiang ChenXumu Zhang . Enantioselective and divergent construction of chiral amino alcohols and oxazolidin-2-ones via Ir-f-phamidol-catalyzed dynamic kinetic asymmetric hydrogenation. Chinese Chemical Letters, 2025, 36(3): 110037-. doi: 10.1016/j.cclet.2024.110037

Metrics
  • PDF Downloads(0)
  • Abstract views(837)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return