Citation: Shaogang Gong, Peng Du, Haiyan Ma. Binuclear Aluminum Complexes Supported by Linked Bis(β-diketiminate) Ligands for Ring-Opening Polymerization of Cyclic Esters[J]. Chinese Journal of Polymer Science, ;2018, 36(2): 190-201. doi: 10.1007/s10118-018-2053-7 shu

Binuclear Aluminum Complexes Supported by Linked Bis(β-diketiminate) Ligands for Ring-Opening Polymerization of Cyclic Esters

  • Corresponding author: Haiyan Ma, haiyanma@ecust.edu.cn
  • Received Date: 1 September 2017
    Accepted Date: 30 September 2017
    Available Online: 21 November 2017

  • Binuclear aluminum alkyl complexes 2a-4g supported by linked bis(β-diketiminate) ligands were synthesized via the reaction of AlEt3 or AlMe3 and the corresponding proligand in a 2:1 molar ratio with moderate yields. The isolated complexes were well-characterized by 1H-NMR, 13C-NMR and elemental analysis. The binuclear nature of aluminum complex 2b was further confirmed by an X-ray diffraction study. All complexes 2a-4g could efficiently initiate the ring-opening polymerization (ROP) of ε-caprolactone in toluene. The substituents at the aromatic rings and the linker unit in the auxiliary ligands exerted significant influence on the catalytic behavior of the investigated aluminum complexes. Complex 4g (R1=R2=Cl) containing propylenyl bridging unit exhibited the highest catalytic activity among these complexes, which might be attributed to the increased electrophilicity of the metal center as well as more opened coordination sphere. The molecular weights of obtained poly(ε-caprolactone)s deviating considerably from the theoretical values indicated that the ROP of ε-caprolactone by complexes 2a-4g was not well-controlled, which was also judged from the broad molecular weight distributions (MWD=1.47-2.47) of produced poly(ε-caprolactone)s. These complexes proved to be inactive toward the polymerization of rac-lactide alone. In the presence of alcohol the polymerization occurred, which was actually initiated by the decomposition species of the aluminum complex upon the treatment with isopropanol.
  • 加载中
    1. [1]

      Mecking S.. Nature or petrochemistry?—Biologically degradable materials[J]. Angew. Chem. Int. Ed., 2004,43:1078-1085. doi: 10.1002/(ISSN)1521-3773

    2. [2]

      Ragauskas A. J., Williams C. K., Davison B. H., Britovsek G., Cairney J., Eckert C. A., Frederick W. J., Hallett J. P., Leak D. J., Liotta C. L., Mielenz J. R., Murphy R., Templer R., Tschaplinski T.. The path forward for biofuels and biomaterials[J]. Science, 2006,311:484-489. doi: 10.1126/science.1114736

    3. [3]

      Williams C. K., Hillmyer M. A.. Polymers from renewable resources: a perspective for a special issue of polymer reviews[J]. Polym. Rev., 2008,48:1-10. doi: 10.1080/15583720701834133

    4. [4]

      Dechy-Cabaret O., Martin-Vaca B., Bourissou D.. Controlled ring-opening polymerization of lactide and glycolide[J]. Chem. Rev., 2004,104:6147-6176. doi: 10.1021/cr040002s

    5. [5]

      Wu J., Yu T. L., Chen C. T., Lin C. C.. Recent developments in main group metal complexes catalyzed/initiated polymerization of lactides and related cyclic esters[J]. Coord. Chem. Rev., 2006,250:602-626. doi: 10.1016/j.ccr.2005.07.010

    6. [6]

      Platel R. H., Hodgson L. M., Williams C. K.. Biocompatible initiators for lactide polymerization[J]. Polym. Rev., 2008,48:11-63. doi: 10.1080/15583720701834166

    7. [7]

      Thomas C. M.. Stereocontrolled ring-opening polymerization of cyclic esters: synthesis of new polyester microstructures[J]. Chem. Soc. Rev., 2010,39:165-173. doi: 10.1039/B810065A

    8. [8]

      Stanford M. J., Dove A. P.. Stereocontrolled ring-opening polymerization of lactide[J]. Chem. Soc. Rev., 2010,39:486-494. doi: 10.1039/B815104K

    9. [9]

      Cheng M., Attygalle A. B., Lobkovsky E. B., Coates G. W.. Single-site catalysts for ring-opening polymerization: synthesis of heterotactic poly(lactic acid) from rac-lactide[J]. J. Am. Chem. Soc., 1999,121:11583-11584. doi: 10.1021/ja992678o

    10. [10]

      Chamberlain B. M., Cheng M., Moore D. R., Ovitt T. M., Lobkovsky E. B., Coates G. W.. Polymerization of lactide with zinc and magnesium β-diiminate complexes: stereocontrol and mechanism[J]. J. Am. Chem. Soc., 2001,123:3229-3238. doi: 10.1021/ja003851f

    11. [11]

      Chisholm M. H., Gallucci J., Phomphrai K.. Coordination chemistry and reactivity of monomeric alkoxides and amides of magnesium and zinc supported by the diiminato ligand CH(CMeNC6H3-2, 6-iPr2)2[J]. A comparative study. Inorg. Chem., 2002,41:2785-2794.

    12. [12]

      Williams C. K., Breyfogle L. E., Choi S. K., Nam W., Young V. G., Hillmyer M. A., Tolman W. B.. A highly active zinc catalyst for the controlled polymerization of lactide[J]. J. Am. Chem. Soc., 2003,125:11350-11359. doi: 10.1021/ja0359512

    13. [13]

      Dove A., Gibson V. C., Marshall E., White A., Williams D.. Magnesium and zinc complexes of a potentially tridentate β-diketiminate ligand[J]. Dalton Trans.,, 2004:570-578.  

    14. [14]

      Silvernail C. M., Yao L. J., Hill L. M. R., Hillmyer M. A., Tolman W. B.. Structural and mechanistic studies of bis(phenolato)amine zinc(Ⅱ) catalysts for the polymerization of ε-caprolactone[J]. Inorg. Chem., 2007,46:6565-6574. doi: 10.1021/ic700581s

    15. [15]

      Chuang H. J., Ch en, H. Li.; Huang B. H., Tsai T. E., Huang P. L., Liao T. T., Lin C. C.. Efficient zinc initiators supported by NNO-tridentate ketiminate ligands for cyclic esters polymerization[J]. J. Polym. Sci., Part A: Polym. Chem., 2013,51:1185-1196. doi: 10.1002/pola.26486

    16. [16]

      Song S., Zhang X., Ma H., Yang Y.. Zinc complexes supported by claw-type aminophenolate ligands: synthesis, characterization and catalysis in the ring-opening polymerization of rac-lactide[J]. Dalton Trans., 2012,41:3266-3277. doi: 10.1039/c2dt11767c

    17. [17]

      Honrado M., Otero A., Fernández-Baeza J., Sánchez-Barba L. F., Lara-Sánchez A., Tejeda J., Carrión M. P., Martínez-Ferrer J., Garcés A., Rodríguez A. M.. Efficient synthesis of an unprecedented enantiopure hybrid scorpionate/cyclopentadienyl by diastereoselective nucleophilic addition to a fulvene[J]. Organometallics, 2013,32:3437-3440. doi: 10.1021/om4003279

    18. [18]

      Wang H., Ma H.. Highly Diastereoselective synthesis of chiral aminophenolate zinc complexes and isoselective polymerization of rac-lactide[J]. Chem. Commun., 2013,49:8686-8688. doi: 10.1039/c3cc44980g

    19. [19]

      Wang H., Yang Y., Ma H.. Stereoselectivity switch between zinc and magnesium initiators in the polymerization of rac-lactide: different coordination chemistry, different stereocontrol mechanisms[J]. Macromolecules, 2014,47:7750-7764. doi: 10.1021/ma501896r

    20. [20]

      Mou Z., Liu B., Wang M., Xie H., Li P., Li L., Li S., Cui D.. Isoselective ring-opening polymerization of rac-lactide initiated by achiral heteroscorpionate zwitterionic zinc complexes[J]. Chem. Commun., 2014,50:11411-11413. doi: 10.1039/C4CC05033A

    21. [21]

      Abbina S., Du G.. Zinc-catalyzed highly isoselective ring opening polymerization of rac-lactide[J]. ACS Macro Lett., 2014,3:689-692. doi: 10.1021/mz5002959

    22. [22]

      Yang Y., Wang H., Ma H.. Stereoselective polymerization of rac-lactide catalyzed by zinc complexes with tetradentate aminophenolate ligands in different coordination patterns: kinetics and mechanism[J]. Inorg. Chem., 2015,54:5839-5854. doi: 10.1021/acs.inorgchem.5b00558

    23. [23]

      Wang H., Yang Y., Ma H.. Exploring steric effects in diastereoselective synthesis of chiral aminophenolate zinc complexes and stereoselective ring-opening polymerization of rac-lactide[J]. Inorg. Chem., 2016,55:7356-7372. doi: 10.1021/acs.inorgchem.6b00378

    24. [24]

      Rosen T., Popowski Y., Goldberg I., Kol M.. Zinc complexes of sequential tetradentate monoanionic ligands in the isoselective polymerization of rac-lactide[J]. Chem. Eur. J., 2016,22:11533-11536. doi: 10.1002/chem.201601979

    25. [25]

      Shueh M. L., Wang Y. S., Huang B. H., Kuo C. Y., L in, C. C.. Reactions of 2, 2-methylene bis(4-chloro-6-isopropyl-3-methylphenol) and 2, 2-ethylidene bis(4, 6-di-tert-butylphenol) with MgnBu2: efficient catalysts for ring-opening polymerization of ε-caprolactone and L-lactide.[J]. Macromolecules, 2004,37:5155-5162. doi: 10.1021/ma049778l

    26. [26]

      Yu T. L., Wu C. C., Chen C. C., Huang B. H., Wu J., Lin C. C.. Catalysts for the ring-opening polymerization of ε-caprolactone and L-lactide and the mechanistic study[J]. Polymer, 2005,46:5909-5917. doi: 10.1016/j.polymer.2005.04.079

    27. [27]

      Wang L., Ma H.. Highly active magnesium initiators for ring-opening polymerization of rac-LA[J]. Macromolecules, 2010,43:6535-6537. doi: 10.1021/ma101263g

    28. [28]

      Song S., Ma H., Yang Y.. Magnesium complexes supported by salan-like ligands, synthesis, characterization and their application in the ring-opening polymerization of rac-lactide[J]. Dalton Trans., 2013,42:14200-14211. doi: 10.1039/c3dt51344k

    29. [29]

      Xie H., Mou Z., Liu B., Li P., Rong W., Li S., Cui D.. Phosphinimino-amino magnesium complexes, synthesis and catalysis of heteroselective ROP of rac-lactide[J]. Organometallics, 2014,33:722-730. doi: 10.1021/om401056s

    30. [30]

      Chisholm M. H., Gallucci J. C., Phomphrai K.. Well-defined calcium initiators for lactide polymerization[J]. Inorg. Chem., 2004,43:6717-6725. doi: 10.1021/ic0490730

    31. [31]

      Chisholm M. H., Gallucci J. C., Phomphrai K.. Lactide polymerization by well-defined calcium coordination complexes, comparisons with related magnesium and zinc chemistry[J]. Chem. Commun., 2003:48-49.  

    32. [32]

      Darensbourg D. J., Choi W., Karroonnirun O., Bhuvanesh N.. Ring-opening polymerization of cyclic monomers by complexes derived from biocompatible metals[J]. Production of poly(lactide), poly(trimethylene carbonate), and their copolymers. Macromolecules, 2008,41:3493-3502.

    33. [33]

      Bhattacharjee J., Harinath A., Nayek H. P., Sarkar A., Panda T. K.. Highly active and iso-selective catalysts for the ring-opening polymerization of cyclic esters using group 2 metal initiators[J]. Chem. Eur. J., 2017,23:9319-9331. doi: 10.1002/chem.v23.39

    34. [34]

      Fuoco T., Pappalardo D.. Aluminum alkyl complexes bearing salicylaldiminato ligands: versatile initiators in the ring-opening polymerization of cyclic esters[J]. Catalysts, 2017. doi: 10.3390/catal7020064

    35. [35]

      Huang C. H., Wang F. C., Ko B. T., Yu T. L., Lin C. C.. Ring-opening polymerization of ε-caprolactone and L-lactide using aluminum thiolates as initiator[J]. Macromolecules, 2001,34:356-361. doi: 10.1021/ma0014719

    36. [36]

      Alcazar-Roman L. M., O'Keefe B. J., Hillmyer M. A., Tolman W. B.. Electronic influence of ligand substituents on the rate of polymerization of ε-caprolactone by single-site aluminium alkoxide catalysts[J]. Dalton Trans., 2003:3082-3087.  

    37. [37]

      Chen C. T., Huang C. A., Huang B. H.. Aluminium metal complexes supported by amine bis-phenolate ligands as catalysts for ring-opening polymerization of ε-caprolactone[J]. Dalton Trans., 2003:3799-3803.  

    38. [38]

      Chen C. T., Huang C. A., Huang B. H.. Aluminum complexes supported by tridentate aminophenoxide ligand as efficient catalysts for ring-opening polymerization of ε-caprolactone[J]. Macromolecules, 2004,33:7968-7973.

    39. [39]

      Spassky N., Wisniewski M., Pluta C., LeBorgne A.. Highly stereoelective polymerization of rac-(D, L)-lactide with a chiral Schiff's base/aluminium alkoxide initiator[J]. Macromol. Chem. Phys., 1996,197:2627-2637. doi: 10.1002/macp.1996.021970902

    40. [40]

      Radano C. P., Baker G. L., Smith M. R.. [J]. Stereoselective polymerization of a racemic monomer with a racemic catalyst: direct preparation of the polylactic acid stereocomplex from racemic lactide. J. Am. Chem. Soc., 2000,122:1552-1553.

    41. [41]

      Nomura N., Ishii R., Akakura M., Aoi K.. Stereoselective ring-opening polymerization of racemic lactide using aluminum-achiral ligand complexes: exploration of a chain-end control mechanism[J]. J. Am. Chem. Soc., 2002,124:5938-5939. doi: 10.1021/ja0175789

    42. [42]

      Ovitt T. M., Coates G. W.. Stereochemistry of lactide polymerization with chiral catalysts: new opportunities for stereocontrol using polymer exchange mechanisms[J]. J. Am. Chem. Soc., 2002,124:1316-1326. doi: 10.1021/ja012052+

    43. [43]

      Zhong Z., Dijkstra P. J., Feijen J.. [(Salen)Al]-mediated, controlled and stereoselective ring-opening polymerization of lactide in solution and without solvent: synthesis of highly isotactic polylactide stereocopolymers from racemic D, L-lactide[J]. Angew. Chem. Int. Ed., 2002,114:4692-4695. doi: 10.1002/1521-3757(20021202)114:23<4692::AID-ANGE4692>3.0.CO;2-5

    44. [44]

      Zhong Z., Dijkstra P. J., Feijen J.. Controlled and stereoselective polymerization of lactide: kinetics, selectivity, and microstructures[J]. J. Am. Chem. Soc., 2003,125:11291-11298. doi: 10.1021/ja0347585

    45. [45]

      Tang Z., Chen X., Pang X., Yang Y., Zhang X., Jing X.. Stereoselective polymerization of rac-lactide using a monoethylaluminum Schiff base complex[J]. Biomacromolecules, 2004,5:965-970. doi: 10.1021/bm034467o

    46. [46]

      Hormnirun P., Marshall E. L., Gibson V. C., White A. J. P., Williams D. J.. Remarkable stereocontrol in the polymerization of racemic lactide using aluminum initiators supported by tetradentate aminophenoxide ligands[J]. J. Am. Chem. Soc., 2004,126:2688-2689. doi: 10.1021/ja038757o

    47. [47]

      Majerska K., Duda A.. Stereocontrolled polymerization of racemic lactide with chiral initiator: combining stereoselection and chiral ligand-exchang mechanism[J]. J. Am. Chem. Soc., 2004,126:1026-1027. doi: 10.1021/ja0388966

    48. [48]

      Chisholm M. H., Patmore N. J., Zhou Z.. Concerning the relative importance of enantiomorphic site versus chain end control in the stereoselective polymerization of lactides: reactions of (R, R-salen)-and (S, S-salen)-aluminium alkoxides LAlOCH2R complexes (R = CH3 and S-CHMeCl)[J]. Chem. Commun., 2005:127-129.

    49. [49]

      Nomura N., Ishii R., Yamamoto Y., Kondo T.. Stereoselective ring-opening polymerization of a racemic lactide by using achiral salen-and homosalen-aluminum complexes[J]. Chem. Eur. J., 2007,13:4433-4451. doi: 10.1002/(ISSN)1521-3765

    50. [50]

      Du H., Pang X., Yu H., Zhuang X., Chen X., Cui D., Wang X., Jing X.. Polymerization of rac-lactide using Schiff base aluminum catalysts:  structure, activity, and stereoselectivity[J]. Macromolecules, 2007,40:1904-1913. doi: 10.1021/ma062194u

    51. [51]

      Chen H. L., Dutta S., Huang P. Y., Lin C. C.. Preparation and characterization of aluminum alkoxides coordinated on salen-type ligands: highly stereoselective ring-opening polymerization of rac-Lactide[J]. Organometallics, 2012,31:2016-2025. doi: 10.1021/om201281w

    52. [52]

      Maudoux N., Roisnel T., Dorcet V., Carpentier J. F., Sarazin , Y .. Chiral (1, 2)-diphenylethylene-salen complexes of triel metals: coordination patterns and mechanistic considerations in the isoselective ROP of lactide[J]. Chem. Eur. J., 2014,20:6131-6147. doi: 10.1002/chem.201304788

    53. [53]

      Pilone A., Press K., Goldberg I., Kol M., Mazzeo M., Lamberti M.. Gradient isotactic multiblock polylactides from aluminum complexes of chiral salalen ligands[J]. J. Am. Chem. Soc., 2014,136:2940-2943. doi: 10.1021/ja412798x

    54. [54]

      Press K., Goldberg I., Kol M.. Mechanistic insight into the stereochemical control of lactide polymerization by salan-aluminum catalysts[J]. Angew. Chem. Int. Ed., 2015,54:14858-14861. doi: 10.1002/anie.201503111

    55. [55]

      Douglas A. F., Patrick B. O., Mehrkhodavandi P.. A highly active chiral indium catalyst for living lactide polymerization[J]. Angew. Chem. Int. Ed., 2008,120:2322-2325. doi: 10.1002/(ISSN)1521-3757

    56. [56]

      Yu I., Acosta-Ramírez A., Mehrkhodavandi P.. Mechanism of living lactide polymerization by dinuclear indium catalysts and its Impact on isoselectivity[J]. J. Am. Chem. Soc., 2012,134:12758-12773. doi: 10.1021/ja3048046

    57. [57]

      Aluthge D. C., Patrick B. O., Mehrkhodavandi P.. A Highly active and site selective indium catalyst for lactide polymerization[J]. Chem. Commun., 2013,49:4295-4297. doi: 10.1039/C2CC33519K

    58. [58]

      Aluthge D. C., Ahn J. M., Mehrkhodavandi P.. Overcoming aggregation in indium salen catalysts for isoselective lactide polymerization[J]. Chem. Sci., 2015,6:5284-5292. doi: 10.1039/C5SC01584G

    59. [59]

      Myers D., White A. J. P., Forsyth C. M., Bown M., Williams C. K.. Phosphasalen indium complexes showing high rates and isoselectivities in rac-lactide polymerizations[J]. Angew. Chem. Int. Ed., 2017,56:5277-5282. doi: 10.1002/anie.201701745

    60. [60]

      Zhang J., Xiong J., Sun Y., Tang N., Wu J.. Highly iso-selective and active catalysts of sodium and potassium monophenoxides capped by a crown ether for the ring-opening polymerization of rac-lactide[J]. Macromolecules, 2014,47:7789-7796. doi: 10.1021/ma502000y

    61. [61]

      Dai Z., Sun Y., Xiong J., Pan X., Wu J.. Alkali-metal monophenolates with a sandwich-type catalytic center as catalysts for highly isoselective polymerization of rac-lactide[J]. ACS Macro Lett., 2015,4:556-560. doi: 10.1021/acsmacrolett.5b00209

    62. [62]

      Sun Y., Xiong J., Dai Z., Pan X., Tang N., Wu J.. Stereoselective alkali-metal catalysts for highly isotactic poly(rac-lactide) synthesis[J]. Inorg. Chem., 2016,55:136-143. doi: 10.1021/acs.inorgchem.5b02709

    63. [63]

      Russell S. K., Gamble C. L., Gibbins K. J., Juhl K. C. S., Mitchell , Ⅲ , W. S.; Tumas A. J., Hofmeister E. G.. Stereoselective controlled polymerization of D, L-lactide with[J]. Macromolecules, 2005,38:10336-10340. doi: 10.1021/ma051811w

    64. [64]

      Chmura A. J., Davidson M. G., Frankis C. J., Jones M. D., Lunn M. D.. Highly active and stereoselective zirconium and hafnium alkoxide initiators for solvent-free ring-opening polymerization of rac-lactide[J]. Chem. Commun., 2008:1293-1295.

    65. [65]

      Zelikoff A. L., Kopilov J., Goldberg I., Coates G. W., Kol M.. New facets of an old ligand, titanium and zirconium complexes of phenylenediamine bis(phenolate) in lactide polymerisation catalysis[J]. Chem. Commun., 2009:6804-6806.

    66. [66]

      Whitelaw E., Davidson M., Jones M.. Group 4 salalen complexes for the production and degradation of polylactide[J]. Chem. Comm., 2011,47:10004-10006. doi: 10.1039/c1cc13910j

    67. [67]

      Stopper A., Okuda J., Kol M.. Ring-opening polymerization of lactide with Zr complexes of {ONSO} ligands: from heterotactically inclined to isotactically inclined poly(lactic acid)[J]. Macromolecules, 2012,45:698-704. doi: 10.1021/ma2023364

    68. [68]

      Jones M. D., Hancock S. L., McKeown P., Sch fer P. M., Buchard A., Thomas L. H., Mahon M. F., Lowe J. P.. Zirconium complexes of bipyrrolidine derived salan ligands for the isoselective polymerisation of rac-lactide[J]. Chem. Commun., 2014,50:15967-15970. doi: 10.1039/C4CC07871C

    69. [69]

      Jones M. D., Brady L., McKeown P., Buchard A., Schäfer P. M., Thomas L. H., Mahon M. F., Woodman T. J., Lowe J. P.. Metal influence on the iso- and hetero-selectivity of complexes of bipyrrolidine derived salan ligands for the polymerisation of rac-lactide[J]. Chem. Sci., 2015,6:5034-5039. doi: 10.1039/C5SC01819F

    70. [70]

      Cai C. X., Amgoune A., Lehmann C. W., Carpentier J. F.. Stereoselective ring-opening polymerization of racemic lactide using alkoxy-amino-bis(phenolate) group 3 metal complexes[J]. Chem. Commun., 2004:330-331.  

    71. [71]

      Ma H., Spaniol T., Okuda J.. Highly heteroselective ring-opening polymerization of rac-lactide initiated by bis(phenolato) scandium complexes[J]. Angew. Chem. Int. Ed., 2006,45:7818-7821. doi: 10.1002/(ISSN)1521-3773

    72. [72]

      Amgoune A., Thomas C. M., Roisnel T., Carpentier J. F.. Ring-opening polymerization of lactide with group 3 metal complexes supported by dianionic alkoxy-amino-bisphenolate ligands, combining high activity, productivity and selectivity[J]. Chem. Eur. J., 2006,12:169-179. doi: 10.1002/(ISSN)1521-3765

    73. [73]

      Amgoune A., Thomas C. M., Carpentier J. F.. Yttrium complexes as catalysts for living and immortal polymerization of lactide to highly heterotactic PLA[J]. Macromol. Rapid Commun., 2007,28:693-697. doi: 10.1002/(ISSN)1521-3927

    74. [74]

      Liu X., Shang X., Tang T., Cui D., Chen X., Jing X.. Achiral lanthanide alkyl complexes bearing N, O multidentate ligands, synthesis and catalysis of highly heteroselective ring-opening polymerization of rac-lactide[J]. Organometallics, 2007,26:2747-2757. doi: 10.1021/om0700359

    75. [75]

      Arnold P. L., Buffet J. C., Blaudeck R. P., Sujecki S., Blake A. J., Wilson C. A.. C3-Symmetric lanthanide tris(alkoxide) complexes formed by preferential complexation and their stereoselective polymerization of rac-lactide[J]. Angew. Chem. Int. Ed., 2008,47:6033-6036. doi: 10.1002/anie.v47:32

    76. [76]

      Clark , L; Cushion M., Dyer H., Schwarz A., Duchateau R., Mountford P.. Dicationic and zwitterionic catalysts for the amine-initiated, immortal ring-opening polymerization of rac-lactide: facile synthesis of amine-terminated, highly heterotactic PLA[J]. Chem. Commun., 2010,46:273-275. doi: 10.1039/B919162C

    77. [77]

      Yang S., Zhu Du, Zhang Y., Shen Q.. Highly Heteroselective ring-opening polymerization of racemic lactide initiated by divalent ytterbium complexes bearing amino bis(phenolate) ligands[J]. Chem. Commun., 2012,48:9780-9782. doi: 10.1039/c2cc34451c

    78. [78]

      Cao T. P. A., Buchard A., Goff X. F. L., Auffrant A., Williams C. K.. Phosphasalen yttrium complexes, highly active and stereoselective initiators for lactide polymerization[J]. Inorg. Chem., 2012,51:2157-2169. doi: 10.1021/ic202015z

    79. [79]

      Bakewell C., Cao T. P. A., Long N., Le Goff X. F., Auffrant A., Williams C. K.. Yttrium phosphasalen initiators for rac-lactide polymerization: excellent rates and high iso-selectivities[J]. J. Am. Chem. Soc., 2012,134:20577-20580. doi: 10.1021/ja310003v

    80. [80]

      Bakewell C., White A. J. P., Long N. J., Auffrant A., Williams C. K.. Metal-size influence in iso-selective lactide polymerization[J]. Angew. Chem. Int. Ed., 2014,53:9226-9230. doi: 10.1002/anie.201403643

    81. [81]

      Xu T. Q., Yang G. W., Liu C., Lu X. B.. Highly robust yttrium bis(phenolate) ether catalysts for excellent isoselective ring-opening polymerization of racemic lactide[J]. Macromolecules, 2017,50:515-522. doi: 10.1021/acs.macromol.6b02439

    82. [82]

      Chakraborty D., Ch en, E. Y. X.. Neutral, three-coordinate, chelating diamide aluminum complexes: catalysts/initiators for synthesis of telechelic oligomers and high polymers.[J]. Organometallics, 2002,21:1438-1442. doi: 10.1021/om011051n

    83. [83]

      Chai Z. Y., Zhang C., Wa ng, Z. X.. Synthesis, characterization, and catalysis in ε-caprolactone polymerization of aluminum and zinc complexes supported by N, N, N-chelate ligands.[J]. Organometallics, 2008,27:1626-1633. doi: 10.1021/om701112m

    84. [84]

      Yao W., Mu Y., Gao A. H., Su Q., Liu; Y. J.; Zhang Y. Y.. Efficient ring-opening polymerization of ε-caprolactone using anilido-imine-aluminum complexes in the presence of benzyl alcohol[J]. Polymer, 2008,49:2486-2491. doi: 10.1016/j.polymer.2008.03.035

    85. [85]

      Yao W., Mu Y., Gao A., Wei W., Ye L.. Bimetallic anilido-aldimine Al or Zn complexes for efficient ring-opening polymerization of ε-caprolactone[J]. Dalton Trans., 2008:3199-3206.

    86. [86]

      Liu J., Ma H.. Aluminum complexes with bidentate amido ligands: synthesis, structure and performance on ligand-initiated ring-opening polymerization of rac-lactide[J]. Dalton Trans., 2014,43:9098-9110. doi: 10.1039/c4dt00353e

    87. [87]

      Liu J., Ma H.. Well-controlled ring-opening polymerization of cyclic esters catalyzed by aluminum amido complexes: kinetics and mechanism[J]. J. Polym. Sci., A: Polym. Chem., 2014,52:3096-3106. doi: 10.1002/pola.v52.21

    88. [88]

      Kosuru S. R., Sun T. H., Wang L. F., Vandavasi J. K., Lu W. Y., Lai Y. C., Hsu S. C. N., Chiang M. Y., Chen H. Y.. Enhanced catalytic activity of aluminum complexes for the ring-opening polymerization of ε-caprolactone[J]. Inorg. Chem., 2017,56:7998-8006. doi: 10.1021/acs.inorgchem.7b00763

    89. [89]

      Gong S., Ma H.. β-Diketiminate aluminum complexes: synthesis, characterization and ring-opening polymerization of cyclic esters[J]. Dalton Trans., 2008:3345-3357.  

    90. [90]

      Pilz M., Limberg C., Ziemer B.. Xanthene-based ligand with two adjacent β-diiminato binding sites[J]. J. Org. Chem., 2006,71:4559-4564. doi: 10.1021/jo060394y

    91. [91]

      Hebden T., Brennessel W., Flaschenriem C., Holland P.. A dinucleating ligand related to the β-diketiminates[J]. Dalton Trans., 2006:3855-3857.  

    92. [92]

      Vela J., Zhu L., Flaschenriem C., Brennessel W.. Macrocyclic binucleating β-diketiminate ligands and their lithium, aluminum, and zinc complexes[J]. Organometallics, 2007,26:3416-3423. doi: 10.1021/om0700258

    93. [93]

      Vitanova D., Hampel F., Hultzsch K.. Synthesis and structural characterisation of novel linked bis(β-diketiminato) rare earth metal complexes[J]. Dalton Trans., 2005:1565-1566.  

    94. [94]

      Vitanova D., Hampel F., Hultzsch K.. Rare earth complexes based on β-diketiminato and novel linked bis(β-diketiminato) ligands: synthesis, structures characterization and catalytic application in epoxide/CO2-copolymerization[J]. J. Organomet. Chem., 2005,690:5182-5197. doi: 10.1016/j.jorganchem.2005.03.066

    95. [95]

      Gong S., Ma H., Huang J.. Zirconium and hafnium complexes supported by linked bis(β-diketiminate) ligands: synthesis, characterization and catalytic application in ethylene polymerization[J]. Dalton Trans., 2009:8237-8247.  

    96. [96]

      SADABS, Bruker Nonius area detector scaling and absorption correction-V2. 05; Bruker AXS Inc. : Madison, WI, 1996.

    97. [97]

      Sheldrick, G. M. SHELXTL 5. 10 for windows NT, Structure Determination Software Programs; Bruker Analytical X-ray Systems, Inc. : Madison, WI, 1997.

    98. [98]

      SAINT, Version 6. 02; Bruker AXS Inc. : Madison, WI, 1999.

    99. [99]

      Sheldrick, G. M. SHELXS-97, Program for the Solution of Crystal Structures; University of Gottingen: Germany, 1990.

    100. [100]

      Sheldrick, G. M. SHELXL-97, Program for the Refinement of Crystal Structures; University of Gottingen: Germany, 1997.

    101. [101]

      Johnson, C. K. ORTEP-II: A FORTRAN Thermal Ellipsoid Plot Program for Crystal Structure Illustrations, Report ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, TN, USA, 1976.

    102. [102]

      Nomura N., Aoyama T., Ishii R., Kondo T.. Salicylaldimine-aluminum complexes for the facile and efficient ring-opening polymerization of ε-caprolactone[J]. Macromolecules, 2005,38:5363-5366. doi: 10.1021/ma050606d

    103. [103]

      Radzewich C. E., Coles M. P., Jordan R. F.. Reversible ethylene cycloaddition reactions of cationic aluminum β-diketiminate complexes[J]. J. Am. Chem. Soc., 1998,120:9384-9385. doi: 10.1021/ja9818405

    104. [104]

      Li D., Peng Y., Geng C., Liu K., Kong D.. Well-controlled ring-opening polymerization of cyclic esters initiated by dialkylaluminum β-diketiminates[J]. Dalton Trans., 2013,42:11295-11303. doi: 10.1039/c3dt50372k

    105. [105]

      Hao P., Yang Z., Li W., Ma X., Roesky H. W., Yang Y., Li J.. Aluminum complexes containing the C―O―Al―O―C framework as efficient initiators for ring-opening polymerization of ε-caprolactone[J]. Organometallics, 2015,34:105-108. doi: 10.1021/om500950p

    106. [106]

      Lu N., Jiang Z., Pei H., Liu W., Li Y., Dong Y.. Ring-opening polymerization of ε-caprolactone initiated by aluminium complexes based on pyridine-substituted asymmetric β-diketiminate ligands[J]. Eur. J. Inorg. Chem., 2017:1320-1327.  

    107. [107]

      Lewiński J., Horeglad P., Wojcik K., Justyniak I.. Chelation effect in polymerization of cyclic esters by metal alkoxides: structure characterization of the intermediate formed by primary insertion of lactide into the Al―OR bond of an organometallic initiator[J]. Organometallics, 2005,24:4588-4593. doi: 10.1021/om050295v

    108. [108]

      Yu R., Hung C., Huang J., Lee H., Chen J.. Four-and five-coordinate aluminum ketiminate complexes: synthesis, characterization, and ring-opening polymerization[J]. Inorg. Chem., 2002,41:6450-6455. doi: 10.1021/ic025785j

  • 加载中
    1. [1]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    2. [2]

      Xue ZhaoMengshan ChenDan WangHaoran ZhangGuangzhi HuYingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327

    3. [3]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    4. [4]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    5. [5]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

    6. [6]

      Xinzhi Ding Chong Liu Jing Niu Nan Chen Shutao Xu Yingxu Wei Zhongmin Liu . Solid-state NMR study of the stability of MOR framework aluminum. Chinese Journal of Structural Chemistry, 2024, 43(4): 100247-100247. doi: 10.1016/j.cjsc.2024.100247

    7. [7]

      Yi LiuPeng LeiYang FengShiwei FuXiaoqing LiuSiqi ZhangBin TuChen ChenYifan LiLei WangQing-Dao Zeng . Topologically engineering of π-conjugated macrocycles: Tunable emission and photochemical reaction toward multi-cyclic polymers. Chinese Chemical Letters, 2024, 35(10): 109571-. doi: 10.1016/j.cclet.2024.109571

    8. [8]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    9. [9]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    10. [10]

      Shaonan Liu Shuixing Dai Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2023.100277

    11. [11]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    12. [12]

      Mengjuan SunMuye ZhouYifang XiaoHailei TangJinhua ChenRuitao ZhangChunjiayu LiQi YaQian ChenJiasheng TuQiyue WangChunmeng Sun . Reversibly size-switchable polyion complex micelles for antiangiogenic cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109110-. doi: 10.1016/j.cclet.2023.109110

    13. [13]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    14. [14]

      Jingwen ZhaoJianpu TangZhen CuiLimin LiuDayong YangChi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303

    15. [15]

      Zhenjie YangChenyang HuXuan PangXuesi Chen . Sequence design in terpolymerization of ε-caprolactone, CO2 and cyclohexane oxide: Random ester-carbonate distributions lead to large-span tunability. Chinese Chemical Letters, 2024, 35(5): 109340-. doi: 10.1016/j.cclet.2023.109340

    16. [16]

      Zhili LiQijun WoDongdong HuangDezhong ZhouLei GuoYeqing Mao . Improving gene transfection efficiency of highly branched poly(β-amino ester)s through the in-situ conversion of inactive terminal groups. Chinese Chemical Letters, 2024, 35(8): 109737-. doi: 10.1016/j.cclet.2024.109737

    17. [17]

      Chaochao JinKai LiJiongpei ZhangZhihua WangJiajing TanN,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532

    18. [18]

      Lumin ZhengYing BaiChuan Wu . Multi-electron reaction and fast Al ion diffusion of δ-MnO2 cathode materials in rechargeable aluminum batteries via first-principle calculations. Chinese Chemical Letters, 2024, 35(4): 108589-. doi: 10.1016/j.cclet.2023.108589

    19. [19]

      Kongchuan WuDandan LuJianbin LinTing-Bin WenWei HaoKai TanHui-Jun Zhang . Elucidating ligand effects in rhodium(Ⅲ)-catalyzed arene–alkene coupling reactions. Chinese Chemical Letters, 2024, 35(5): 108906-. doi: 10.1016/j.cclet.2023.108906

    20. [20]

      Luyao Lu Chen Zhu Fei Li Pu Wang Xi Kang Yong Pei Manzhou Zhu . Ligand effects on geometric structures and catalytic activities of atomically precise copper nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(10): 100411-100411. doi: 10.1016/j.cjsc.2024.100411

Metrics
  • PDF Downloads(0)
  • Abstract views(948)
  • HTML views(41)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return