Binuclear Aluminum Complexes Supported by Linked Bis(β-diketiminate) Ligands for Ring-Opening Polymerization of Cyclic Esters
- Corresponding author: Haiyan Ma, haiyanma@ecust.edu.cn
Citation: Shaogang Gong, Peng Du, Haiyan Ma. Binuclear Aluminum Complexes Supported by Linked Bis(β-diketiminate) Ligands for Ring-Opening Polymerization of Cyclic Esters[J]. Chinese Journal of Polymer Science, ;2018, 36(2): 190-201. doi: 10.1007/s10118-018-2053-7
Mecking S.. Nature or petrochemistry?—Biologically degradable materials[J]. Angew. Chem. Int. Ed., 2004,43:1078-1085. doi: 10.1002/(ISSN)1521-3773
Ragauskas A. J., Williams C. K., Davison B. H., Britovsek G., Cairney J., Eckert C. A., Frederick W. J., Hallett J. P., Leak D. J., Liotta C. L., Mielenz J. R., Murphy R., Templer R., Tschaplinski T.. The path forward for biofuels and biomaterials[J]. Science, 2006,311:484-489. doi: 10.1126/science.1114736
Williams C. K., Hillmyer M. A.. Polymers from renewable resources: a perspective for a special issue of polymer reviews[J]. Polym. Rev., 2008,48:1-10. doi: 10.1080/15583720701834133
Dechy-Cabaret O., Martin-Vaca B., Bourissou D.. Controlled ring-opening polymerization of lactide and glycolide[J]. Chem. Rev., 2004,104:6147-6176. doi: 10.1021/cr040002s
Wu J., Yu T. L., Chen C. T., Lin C. C.. Recent developments in main group metal complexes catalyzed/initiated polymerization of lactides and related cyclic esters[J]. Coord. Chem. Rev., 2006,250:602-626. doi: 10.1016/j.ccr.2005.07.010
Platel R. H., Hodgson L. M., Williams C. K.. Biocompatible initiators for lactide polymerization[J]. Polym. Rev., 2008,48:11-63. doi: 10.1080/15583720701834166
Thomas C. M.. Stereocontrolled ring-opening polymerization of cyclic esters: synthesis of new polyester microstructures[J]. Chem. Soc. Rev., 2010,39:165-173. doi: 10.1039/B810065A
Stanford M. J., Dove A. P.. Stereocontrolled ring-opening polymerization of lactide[J]. Chem. Soc. Rev., 2010,39:486-494. doi: 10.1039/B815104K
Cheng M., Attygalle A. B., Lobkovsky E. B., Coates G. W.. Single-site catalysts for ring-opening polymerization: synthesis of heterotactic poly(lactic acid) from rac-lactide[J]. J. Am. Chem. Soc., 1999,121:11583-11584. doi: 10.1021/ja992678o
Chamberlain B. M., Cheng M., Moore D. R., Ovitt T. M., Lobkovsky E. B., Coates G. W.. Polymerization of lactide with zinc and magnesium β-diiminate complexes: stereocontrol and mechanism[J]. J. Am. Chem. Soc., 2001,123:3229-3238. doi: 10.1021/ja003851f
Chisholm M. H., Gallucci J., Phomphrai K.. Coordination chemistry and reactivity of monomeric alkoxides and amides of magnesium and zinc supported by the diiminato ligand CH(CMeNC6H3-2, 6-iPr2)2[J]. A comparative study. Inorg. Chem., 2002,41:2785-2794.
Williams C. K., Breyfogle L. E., Choi S. K., Nam W., Young V. G., Hillmyer M. A., Tolman W. B.. A highly active zinc catalyst for the controlled polymerization of lactide[J]. J. Am. Chem. Soc., 2003,125:11350-11359. doi: 10.1021/ja0359512
Dove A., Gibson V. C., Marshall E., White A., Williams D.. Magnesium and zinc complexes of a potentially tridentate β-diketiminate ligand[J]. Dalton Trans.,, 2004:570-578.
Silvernail C. M., Yao L. J., Hill L. M. R., Hillmyer M. A., Tolman W. B.. Structural and mechanistic studies of bis(phenolato)amine zinc(Ⅱ) catalysts for the polymerization of ε-caprolactone[J]. Inorg. Chem., 2007,46:6565-6574. doi: 10.1021/ic700581s
Chuang H. J., Ch en, H. Li.; Huang B. H., Tsai T. E., Huang P. L., Liao T. T., Lin C. C.. Efficient zinc initiators supported by NNO-tridentate ketiminate ligands for cyclic esters polymerization[J]. J. Polym. Sci., Part A: Polym. Chem., 2013,51:1185-1196. doi: 10.1002/pola.26486
Song S., Zhang X., Ma H., Yang Y.. Zinc complexes supported by claw-type aminophenolate ligands: synthesis, characterization and catalysis in the ring-opening polymerization of rac-lactide[J]. Dalton Trans., 2012,41:3266-3277. doi: 10.1039/c2dt11767c
Honrado M., Otero A., Fernández-Baeza J., Sánchez-Barba L. F., Lara-Sánchez A., Tejeda J., Carrión M. P., Martínez-Ferrer J., Garcés A., Rodríguez A. M.. Efficient synthesis of an unprecedented enantiopure hybrid scorpionate/cyclopentadienyl by diastereoselective nucleophilic addition to a fulvene[J]. Organometallics, 2013,32:3437-3440. doi: 10.1021/om4003279
Wang H., Ma H.. Highly Diastereoselective synthesis of chiral aminophenolate zinc complexes and isoselective polymerization of rac-lactide[J]. Chem. Commun., 2013,49:8686-8688. doi: 10.1039/c3cc44980g
Wang H., Yang Y., Ma H.. Stereoselectivity switch between zinc and magnesium initiators in the polymerization of rac-lactide: different coordination chemistry, different stereocontrol mechanisms[J]. Macromolecules, 2014,47:7750-7764. doi: 10.1021/ma501896r
Mou Z., Liu B., Wang M., Xie H., Li P., Li L., Li S., Cui D.. Isoselective ring-opening polymerization of rac-lactide initiated by achiral heteroscorpionate zwitterionic zinc complexes[J]. Chem. Commun., 2014,50:11411-11413. doi: 10.1039/C4CC05033A
Abbina S., Du G.. Zinc-catalyzed highly isoselective ring opening polymerization of rac-lactide[J]. ACS Macro Lett., 2014,3:689-692. doi: 10.1021/mz5002959
Yang Y., Wang H., Ma H.. Stereoselective polymerization of rac-lactide catalyzed by zinc complexes with tetradentate aminophenolate ligands in different coordination patterns: kinetics and mechanism[J]. Inorg. Chem., 2015,54:5839-5854. doi: 10.1021/acs.inorgchem.5b00558
Wang H., Yang Y., Ma H.. Exploring steric effects in diastereoselective synthesis of chiral aminophenolate zinc complexes and stereoselective ring-opening polymerization of rac-lactide[J]. Inorg. Chem., 2016,55:7356-7372. doi: 10.1021/acs.inorgchem.6b00378
Rosen T., Popowski Y., Goldberg I., Kol M.. Zinc complexes of sequential tetradentate monoanionic ligands in the isoselective polymerization of rac-lactide[J]. Chem. Eur. J., 2016,22:11533-11536. doi: 10.1002/chem.201601979
Shueh M. L., Wang Y. S., Huang B. H., Kuo C. Y., L in, C. C.. Reactions of 2, 2-methylene bis(4-chloro-6-isopropyl-3-methylphenol) and 2, 2-ethylidene bis(4, 6-di-tert-butylphenol) with MgnBu2: efficient catalysts for ring-opening polymerization of ε-caprolactone and L-lactide.[J]. Macromolecules, 2004,37:5155-5162. doi: 10.1021/ma049778l
Yu T. L., Wu C. C., Chen C. C., Huang B. H., Wu J., Lin C. C.. Catalysts for the ring-opening polymerization of ε-caprolactone and L-lactide and the mechanistic study[J]. Polymer, 2005,46:5909-5917. doi: 10.1016/j.polymer.2005.04.079
Wang L., Ma H.. Highly active magnesium initiators for ring-opening polymerization of rac-LA[J]. Macromolecules, 2010,43:6535-6537. doi: 10.1021/ma101263g
Song S., Ma H., Yang Y.. Magnesium complexes supported by salan-like ligands, synthesis, characterization and their application in the ring-opening polymerization of rac-lactide[J]. Dalton Trans., 2013,42:14200-14211. doi: 10.1039/c3dt51344k
Xie H., Mou Z., Liu B., Li P., Rong W., Li S., Cui D.. Phosphinimino-amino magnesium complexes, synthesis and catalysis of heteroselective ROP of rac-lactide[J]. Organometallics, 2014,33:722-730. doi: 10.1021/om401056s
Chisholm M. H., Gallucci J. C., Phomphrai K.. Well-defined calcium initiators for lactide polymerization[J]. Inorg. Chem., 2004,43:6717-6725. doi: 10.1021/ic0490730
Chisholm M. H., Gallucci J. C., Phomphrai K.. Lactide polymerization by well-defined calcium coordination complexes, comparisons with related magnesium and zinc chemistry[J]. Chem. Commun., 2003:48-49.
Darensbourg D. J., Choi W., Karroonnirun O., Bhuvanesh N.. Ring-opening polymerization of cyclic monomers by complexes derived from biocompatible metals[J]. Production of poly(lactide), poly(trimethylene carbonate), and their copolymers. Macromolecules, 2008,41:3493-3502.
Bhattacharjee J., Harinath A., Nayek H. P., Sarkar A., Panda T. K.. Highly active and iso-selective catalysts for the ring-opening polymerization of cyclic esters using group 2 metal initiators[J]. Chem. Eur. J., 2017,23:9319-9331. doi: 10.1002/chem.v23.39
Fuoco T., Pappalardo D.. Aluminum alkyl complexes bearing salicylaldiminato ligands: versatile initiators in the ring-opening polymerization of cyclic esters[J]. Catalysts, 2017. doi: 10.3390/catal7020064
Huang C. H., Wang F. C., Ko B. T., Yu T. L., Lin C. C.. Ring-opening polymerization of ε-caprolactone and L-lactide using aluminum thiolates as initiator[J]. Macromolecules, 2001,34:356-361. doi: 10.1021/ma0014719
Alcazar-Roman L. M., O'Keefe B. J., Hillmyer M. A., Tolman W. B.. Electronic influence of ligand substituents on the rate of polymerization of ε-caprolactone by single-site aluminium alkoxide catalysts[J]. Dalton Trans., 2003:3082-3087.
Chen C. T., Huang C. A., Huang B. H.. Aluminium metal complexes supported by amine bis-phenolate ligands as catalysts for ring-opening polymerization of ε-caprolactone[J]. Dalton Trans., 2003:3799-3803.
Chen C. T., Huang C. A., Huang B. H.. Aluminum complexes supported by tridentate aminophenoxide ligand as efficient catalysts for ring-opening polymerization of ε-caprolactone[J]. Macromolecules, 2004,33:7968-7973.
Spassky N., Wisniewski M., Pluta C., LeBorgne A.. Highly stereoelective polymerization of rac-(D, L)-lactide with a chiral Schiff's base/aluminium alkoxide initiator[J]. Macromol. Chem. Phys., 1996,197:2627-2637. doi: 10.1002/macp.1996.021970902
Radano C. P., Baker G. L., Smith M. R.. Ⅲ[J]. Stereoselective polymerization of a racemic monomer with a racemic catalyst: direct preparation of the polylactic acid stereocomplex from racemic lactide. J. Am. Chem. Soc., 2000,122:1552-1553.
Nomura N., Ishii R., Akakura M., Aoi K.. Stereoselective ring-opening polymerization of racemic lactide using aluminum-achiral ligand complexes: exploration of a chain-end control mechanism[J]. J. Am. Chem. Soc., 2002,124:5938-5939. doi: 10.1021/ja0175789
Ovitt T. M., Coates G. W.. Stereochemistry of lactide polymerization with chiral catalysts: new opportunities for stereocontrol using polymer exchange mechanisms[J]. J. Am. Chem. Soc., 2002,124:1316-1326. doi: 10.1021/ja012052+
Zhong Z., Dijkstra P. J., Feijen J.. [(Salen)Al]-mediated, controlled and stereoselective ring-opening polymerization of lactide in solution and without solvent: synthesis of highly isotactic polylactide stereocopolymers from racemic D, L-lactide[J]. Angew. Chem. Int. Ed., 2002,114:4692-4695. doi: 10.1002/1521-3757(20021202)114:23<4692::AID-ANGE4692>3.0.CO;2-5
Zhong Z., Dijkstra P. J., Feijen J.. Controlled and stereoselective polymerization of lactide: kinetics, selectivity, and microstructures[J]. J. Am. Chem. Soc., 2003,125:11291-11298. doi: 10.1021/ja0347585
Tang Z., Chen X., Pang X., Yang Y., Zhang X., Jing X.. Stereoselective polymerization of rac-lactide using a monoethylaluminum Schiff base complex[J]. Biomacromolecules, 2004,5:965-970. doi: 10.1021/bm034467o
Hormnirun P., Marshall E. L., Gibson V. C., White A. J. P., Williams D. J.. Remarkable stereocontrol in the polymerization of racemic lactide using aluminum initiators supported by tetradentate aminophenoxide ligands[J]. J. Am. Chem. Soc., 2004,126:2688-2689. doi: 10.1021/ja038757o
Majerska K., Duda A.. Stereocontrolled polymerization of racemic lactide with chiral initiator: combining stereoselection and chiral ligand-exchang mechanism[J]. J. Am. Chem. Soc., 2004,126:1026-1027. doi: 10.1021/ja0388966
Chisholm M. H., Patmore N. J., Zhou Z.. Concerning the relative importance of enantiomorphic site versus chain end control in the stereoselective polymerization of lactides: reactions of (R, R-salen)-and (S, S-salen)-aluminium alkoxides LAlOCH2R complexes (R = CH3 and S-CHMeCl)[J]. Chem. Commun., 2005:127-129.
Nomura N., Ishii R., Yamamoto Y., Kondo T.. Stereoselective ring-opening polymerization of a racemic lactide by using achiral salen-and homosalen-aluminum complexes[J]. Chem. Eur. J., 2007,13:4433-4451. doi: 10.1002/(ISSN)1521-3765
Du H., Pang X., Yu H., Zhuang X., Chen X., Cui D., Wang X., Jing X.. Polymerization of rac-lactide using Schiff base aluminum catalysts: structure, activity, and stereoselectivity[J]. Macromolecules, 2007,40:1904-1913. doi: 10.1021/ma062194u
Chen H. L., Dutta S., Huang P. Y., Lin C. C.. Preparation and characterization of aluminum alkoxides coordinated on salen-type ligands: highly stereoselective ring-opening polymerization of rac-Lactide[J]. Organometallics, 2012,31:2016-2025. doi: 10.1021/om201281w
Maudoux N., Roisnel T., Dorcet V., Carpentier J. F., Sarazin , Y .. Chiral (1, 2)-diphenylethylene-salen complexes of triel metals: coordination patterns and mechanistic considerations in the isoselective ROP of lactide[J]. Chem. Eur. J., 2014,20:6131-6147. doi: 10.1002/chem.201304788
Pilone A., Press K., Goldberg I., Kol M., Mazzeo M., Lamberti M.. Gradient isotactic multiblock polylactides from aluminum complexes of chiral salalen ligands[J]. J. Am. Chem. Soc., 2014,136:2940-2943. doi: 10.1021/ja412798x
Press K., Goldberg I., Kol M.. Mechanistic insight into the stereochemical control of lactide polymerization by salan-aluminum catalysts[J]. Angew. Chem. Int. Ed., 2015,54:14858-14861. doi: 10.1002/anie.201503111
Douglas A. F., Patrick B. O., Mehrkhodavandi P.. A highly active chiral indium catalyst for living lactide polymerization[J]. Angew. Chem. Int. Ed., 2008,120:2322-2325. doi: 10.1002/(ISSN)1521-3757
Yu I., Acosta-Ramírez A., Mehrkhodavandi P.. Mechanism of living lactide polymerization by dinuclear indium catalysts and its Impact on isoselectivity[J]. J. Am. Chem. Soc., 2012,134:12758-12773. doi: 10.1021/ja3048046
Aluthge D. C., Patrick B. O., Mehrkhodavandi P.. A Highly active and site selective indium catalyst for lactide polymerization[J]. Chem. Commun., 2013,49:4295-4297. doi: 10.1039/C2CC33519K
Aluthge D. C., Ahn J. M., Mehrkhodavandi P.. Overcoming aggregation in indium salen catalysts for isoselective lactide polymerization[J]. Chem. Sci., 2015,6:5284-5292. doi: 10.1039/C5SC01584G
Myers D., White A. J. P., Forsyth C. M., Bown M., Williams C. K.. Phosphasalen indium complexes showing high rates and isoselectivities in rac-lactide polymerizations[J]. Angew. Chem. Int. Ed., 2017,56:5277-5282. doi: 10.1002/anie.201701745
Zhang J., Xiong J., Sun Y., Tang N., Wu J.. Highly iso-selective and active catalysts of sodium and potassium monophenoxides capped by a crown ether for the ring-opening polymerization of rac-lactide[J]. Macromolecules, 2014,47:7789-7796. doi: 10.1021/ma502000y
Dai Z., Sun Y., Xiong J., Pan X., Wu J.. Alkali-metal monophenolates with a sandwich-type catalytic center as catalysts for highly isoselective polymerization of rac-lactide[J]. ACS Macro Lett., 2015,4:556-560. doi: 10.1021/acsmacrolett.5b00209
Sun Y., Xiong J., Dai Z., Pan X., Tang N., Wu J.. Stereoselective alkali-metal catalysts for highly isotactic poly(rac-lactide) synthesis[J]. Inorg. Chem., 2016,55:136-143. doi: 10.1021/acs.inorgchem.5b02709
Russell S. K., Gamble C. L., Gibbins K. J., Juhl K. C. S., Mitchell , Ⅲ , W. S.; Tumas A. J., Hofmeister E. G.. Stereoselective controlled polymerization of D, L-lactide with[J]. Macromolecules, 2005,38:10336-10340. doi: 10.1021/ma051811w
Chmura A. J., Davidson M. G., Frankis C. J., Jones M. D., Lunn M. D.. Highly active and stereoselective zirconium and hafnium alkoxide initiators for solvent-free ring-opening polymerization of rac-lactide[J]. Chem. Commun., 2008:1293-1295.
Zelikoff A. L., Kopilov J., Goldberg I., Coates G. W., Kol M.. New facets of an old ligand, titanium and zirconium complexes of phenylenediamine bis(phenolate) in lactide polymerisation catalysis[J]. Chem. Commun., 2009:6804-6806.
Whitelaw E., Davidson M., Jones M.. Group 4 salalen complexes for the production and degradation of polylactide[J]. Chem. Comm., 2011,47:10004-10006. doi: 10.1039/c1cc13910j
Stopper A., Okuda J., Kol M.. Ring-opening polymerization of lactide with Zr complexes of {ONSO} ligands: from heterotactically inclined to isotactically inclined poly(lactic acid)[J]. Macromolecules, 2012,45:698-704. doi: 10.1021/ma2023364
Jones M. D., Hancock S. L., McKeown P., Sch fer P. M., Buchard A., Thomas L. H., Mahon M. F., Lowe J. P.. Zirconium complexes of bipyrrolidine derived salan ligands for the isoselective polymerisation of rac-lactide[J]. Chem. Commun., 2014,50:15967-15970. doi: 10.1039/C4CC07871C
Jones M. D., Brady L., McKeown P., Buchard A., Schäfer P. M., Thomas L. H., Mahon M. F., Woodman T. J., Lowe J. P.. Metal influence on the iso- and hetero-selectivity of complexes of bipyrrolidine derived salan ligands for the polymerisation of rac-lactide[J]. Chem. Sci., 2015,6:5034-5039. doi: 10.1039/C5SC01819F
Cai C. X., Amgoune A., Lehmann C. W., Carpentier J. F.. Stereoselective ring-opening polymerization of racemic lactide using alkoxy-amino-bis(phenolate) group 3 metal complexes[J]. Chem. Commun., 2004:330-331.
Ma H., Spaniol T., Okuda J.. Highly heteroselective ring-opening polymerization of rac-lactide initiated by bis(phenolato) scandium complexes[J]. Angew. Chem. Int. Ed., 2006,45:7818-7821. doi: 10.1002/(ISSN)1521-3773
Amgoune A., Thomas C. M., Roisnel T., Carpentier J. F.. Ring-opening polymerization of lactide with group 3 metal complexes supported by dianionic alkoxy-amino-bisphenolate ligands, combining high activity, productivity and selectivity[J]. Chem. Eur. J., 2006,12:169-179. doi: 10.1002/(ISSN)1521-3765
Amgoune A., Thomas C. M., Carpentier J. F.. Yttrium complexes as catalysts for living and immortal polymerization of lactide to highly heterotactic PLA[J]. Macromol. Rapid Commun., 2007,28:693-697. doi: 10.1002/(ISSN)1521-3927
Liu X., Shang X., Tang T., Cui D., Chen X., Jing X.. Achiral lanthanide alkyl complexes bearing N, O multidentate ligands, synthesis and catalysis of highly heteroselective ring-opening polymerization of rac-lactide[J]. Organometallics, 2007,26:2747-2757. doi: 10.1021/om0700359
Arnold P. L., Buffet J. C., Blaudeck R. P., Sujecki S., Blake A. J., Wilson C. A.. C3-Symmetric lanthanide tris(alkoxide) complexes formed by preferential complexation and their stereoselective polymerization of rac-lactide[J]. Angew. Chem. Int. Ed., 2008,47:6033-6036. doi: 10.1002/anie.v47:32
Clark , L; Cushion M., Dyer H., Schwarz A., Duchateau R., Mountford P.. Dicationic and zwitterionic catalysts for the amine-initiated, immortal ring-opening polymerization of rac-lactide: facile synthesis of amine-terminated, highly heterotactic PLA[J]. Chem. Commun., 2010,46:273-275. doi: 10.1039/B919162C
Yang S., Zhu Du, Zhang Y., Shen Q.. Highly Heteroselective ring-opening polymerization of racemic lactide initiated by divalent ytterbium complexes bearing amino bis(phenolate) ligands[J]. Chem. Commun., 2012,48:9780-9782. doi: 10.1039/c2cc34451c
Cao T. P. A., Buchard A., Goff X. F. L., Auffrant A., Williams C. K.. Phosphasalen yttrium complexes, highly active and stereoselective initiators for lactide polymerization[J]. Inorg. Chem., 2012,51:2157-2169. doi: 10.1021/ic202015z
Bakewell C., Cao T. P. A., Long N., Le Goff X. F., Auffrant A., Williams C. K.. Yttrium phosphasalen initiators for rac-lactide polymerization: excellent rates and high iso-selectivities[J]. J. Am. Chem. Soc., 2012,134:20577-20580. doi: 10.1021/ja310003v
Bakewell C., White A. J. P., Long N. J., Auffrant A., Williams C. K.. Metal-size influence in iso-selective lactide polymerization[J]. Angew. Chem. Int. Ed., 2014,53:9226-9230. doi: 10.1002/anie.201403643
Xu T. Q., Yang G. W., Liu C., Lu X. B.. Highly robust yttrium bis(phenolate) ether catalysts for excellent isoselective ring-opening polymerization of racemic lactide[J]. Macromolecules, 2017,50:515-522. doi: 10.1021/acs.macromol.6b02439
Chakraborty D., Ch en, E. Y. X.. Neutral, three-coordinate, chelating diamide aluminum complexes: catalysts/initiators for synthesis of telechelic oligomers and high polymers.[J]. Organometallics, 2002,21:1438-1442. doi: 10.1021/om011051n
Chai Z. Y., Zhang C., Wa ng, Z. X.. Synthesis, characterization, and catalysis in ε-caprolactone polymerization of aluminum and zinc complexes supported by N, N, N-chelate ligands.[J]. Organometallics, 2008,27:1626-1633. doi: 10.1021/om701112m
Yao W., Mu Y., Gao A. H., Su Q., Liu; Y. J.; Zhang Y. Y.. Efficient ring-opening polymerization of ε-caprolactone using anilido-imine-aluminum complexes in the presence of benzyl alcohol[J]. Polymer, 2008,49:2486-2491. doi: 10.1016/j.polymer.2008.03.035
Yao W., Mu Y., Gao A., Wei W., Ye L.. Bimetallic anilido-aldimine Al or Zn complexes for efficient ring-opening polymerization of ε-caprolactone[J]. Dalton Trans., 2008:3199-3206.
Liu J., Ma H.. Aluminum complexes with bidentate amido ligands: synthesis, structure and performance on ligand-initiated ring-opening polymerization of rac-lactide[J]. Dalton Trans., 2014,43:9098-9110. doi: 10.1039/c4dt00353e
Liu J., Ma H.. Well-controlled ring-opening polymerization of cyclic esters catalyzed by aluminum amido complexes: kinetics and mechanism[J]. J. Polym. Sci., A: Polym. Chem., 2014,52:3096-3106. doi: 10.1002/pola.v52.21
Kosuru S. R., Sun T. H., Wang L. F., Vandavasi J. K., Lu W. Y., Lai Y. C., Hsu S. C. N., Chiang M. Y., Chen H. Y.. Enhanced catalytic activity of aluminum complexes for the ring-opening polymerization of ε-caprolactone[J]. Inorg. Chem., 2017,56:7998-8006. doi: 10.1021/acs.inorgchem.7b00763
Gong S., Ma H.. β-Diketiminate aluminum complexes: synthesis, characterization and ring-opening polymerization of cyclic esters[J]. Dalton Trans., 2008:3345-3357.
Pilz M., Limberg C., Ziemer B.. Xanthene-based ligand with two adjacent β-diiminato binding sites[J]. J. Org. Chem., 2006,71:4559-4564. doi: 10.1021/jo060394y
Hebden T., Brennessel W., Flaschenriem C., Holland P.. A dinucleating ligand related to the β-diketiminates[J]. Dalton Trans., 2006:3855-3857.
Vela J., Zhu L., Flaschenriem C., Brennessel W.. Macrocyclic binucleating β-diketiminate ligands and their lithium, aluminum, and zinc complexes[J]. Organometallics, 2007,26:3416-3423. doi: 10.1021/om0700258
Vitanova D., Hampel F., Hultzsch K.. Synthesis and structural characterisation of novel linked bis(β-diketiminato) rare earth metal complexes[J]. Dalton Trans., 2005:1565-1566.
Vitanova D., Hampel F., Hultzsch K.. Rare earth complexes based on β-diketiminato and novel linked bis(β-diketiminato) ligands: synthesis, structures characterization and catalytic application in epoxide/CO2-copolymerization[J]. J. Organomet. Chem., 2005,690:5182-5197. doi: 10.1016/j.jorganchem.2005.03.066
Gong S., Ma H., Huang J.. Zirconium and hafnium complexes supported by linked bis(β-diketiminate) ligands: synthesis, characterization and catalytic application in ethylene polymerization[J]. Dalton Trans., 2009:8237-8247.
SADABS, Bruker Nonius area detector scaling and absorption correction-V2. 05; Bruker AXS Inc. : Madison, WI, 1996.
Sheldrick, G. M. SHELXTL 5. 10 for windows NT, Structure Determination Software Programs; Bruker Analytical X-ray Systems, Inc. : Madison, WI, 1997.
SAINT, Version 6. 02; Bruker AXS Inc. : Madison, WI, 1999.
Sheldrick, G. M. SHELXS-97, Program for the Solution of Crystal Structures; University of Gottingen: Germany, 1990.
Sheldrick, G. M. SHELXL-97, Program for the Refinement of Crystal Structures; University of Gottingen: Germany, 1997.
Johnson, C. K. ORTEP-II: A FORTRAN Thermal Ellipsoid Plot Program for Crystal Structure Illustrations, Report ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, TN, USA, 1976.
Nomura N., Aoyama T., Ishii R., Kondo T.. Salicylaldimine-aluminum complexes for the facile and efficient ring-opening polymerization of ε-caprolactone[J]. Macromolecules, 2005,38:5363-5366. doi: 10.1021/ma050606d
Radzewich C. E., Coles M. P., Jordan R. F.. Reversible ethylene cycloaddition reactions of cationic aluminum β-diketiminate complexes[J]. J. Am. Chem. Soc., 1998,120:9384-9385. doi: 10.1021/ja9818405
Li D., Peng Y., Geng C., Liu K., Kong D.. Well-controlled ring-opening polymerization of cyclic esters initiated by dialkylaluminum β-diketiminates[J]. Dalton Trans., 2013,42:11295-11303. doi: 10.1039/c3dt50372k
Hao P., Yang Z., Li W., Ma X., Roesky H. W., Yang Y., Li J.. Aluminum complexes containing the C―O―Al―O―C framework as efficient initiators for ring-opening polymerization of ε-caprolactone[J]. Organometallics, 2015,34:105-108. doi: 10.1021/om500950p
Lu N., Jiang Z., Pei H., Liu W., Li Y., Dong Y.. Ring-opening polymerization of ε-caprolactone initiated by aluminium complexes based on pyridine-substituted asymmetric β-diketiminate ligands[J]. Eur. J. Inorg. Chem., 2017:1320-1327.
Lewiński J., Horeglad P., Wojcik K., Justyniak I.. Chelation effect in polymerization of cyclic esters by metal alkoxides: structure characterization of the intermediate formed by primary insertion of lactide into the Al―OR bond of an organometallic initiator[J]. Organometallics, 2005,24:4588-4593. doi: 10.1021/om050295v
Yu R., Hung C., Huang J., Lee H., Chen J.. Four-and five-coordinate aluminum ketiminate complexes: synthesis, characterization, and ring-opening polymerization[J]. Inorg. Chem., 2002,41:6450-6455. doi: 10.1021/ic025785j
Laiying Zhang , Yinghuan Wu , Yazi Yu , Yecheng Xu , Haojie Zhang , Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126
Xue Zhao , Mengshan Chen , Dan Wang , Haoran Zhang , Guangzhi Hu , Yingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327
Yuanjin Chen , Xianghui Shi , Dajiang Huang , Junnian Wei , Zhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292
Hailong He , Wenbing Wang , Wenmin Pang , Chen Zou , Dan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534
Fei Yin , Erli Yang , Xue Ge , Qian Sun , Fan Mo , Guoqiu Wu , Yanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753
Xinzhi Ding , Chong Liu , Jing Niu , Nan Chen , Shutao Xu , Yingxu Wei , Zhongmin Liu . Solid-state NMR study of the stability of MOR framework aluminum. Chinese Journal of Structural Chemistry, 2024, 43(4): 100247-100247. doi: 10.1016/j.cjsc.2024.100247
Yi Liu , Peng Lei , Yang Feng , Shiwei Fu , Xiaoqing Liu , Siqi Zhang , Bin Tu , Chen Chen , Yifan Li , Lei Wang , Qing-Dao Zeng . Topologically engineering of π-conjugated macrocycles: Tunable emission and photochemical reaction toward multi-cyclic polymers. Chinese Chemical Letters, 2024, 35(10): 109571-. doi: 10.1016/j.cclet.2024.109571
Anqiu LIU , Long LIN , Dezhi ZHANG , Junyu LEI , Kefeng WANG , Wei ZHANG , Junpeng ZHUANG , Haijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424
Shulei Hu , Yu Zhang , Xiong Xie , Luhan Li , Kaixian Chen , Hong Liu , Jiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408
Shaonan Liu , Shuixing Dai , Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2023.100277
Chao Ma , Cong Lin , Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209
Mengjuan Sun , Muye Zhou , Yifang Xiao , Hailei Tang , Jinhua Chen , Ruitao Zhang , Chunjiayu Li , Qi Ya , Qian Chen , Jiasheng Tu , Qiyue Wang , Chunmeng Sun . Reversibly size-switchable polyion complex micelles for antiangiogenic cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109110-. doi: 10.1016/j.cclet.2023.109110
Peng Meng , Qian-Cheng Luo , Aidan Brock , Xiaodong Wang , Mahboobeh Shahbazi , Aaron Micallef , John McMurtrie , Dongchen Qi , Yan-Zhen Zheng , Jingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542
Jingwen Zhao , Jianpu Tang , Zhen Cui , Limin Liu , Dayong Yang , Chi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303
Zhenjie Yang , Chenyang Hu , Xuan Pang , Xuesi Chen . Sequence design in terpolymerization of ε-caprolactone, CO2 and cyclohexane oxide: Random ester-carbonate distributions lead to large-span tunability. Chinese Chemical Letters, 2024, 35(5): 109340-. doi: 10.1016/j.cclet.2023.109340
Zhili Li , Qijun Wo , Dongdong Huang , Dezhong Zhou , Lei Guo , Yeqing Mao . Improving gene transfection efficiency of highly branched poly(β-amino ester)s through the in-situ conversion of inactive terminal groups. Chinese Chemical Letters, 2024, 35(8): 109737-. doi: 10.1016/j.cclet.2024.109737
Chaochao Jin , Kai Li , Jiongpei Zhang , Zhihua Wang , Jiajing Tan . N,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532
Lumin Zheng , Ying Bai , Chuan Wu . Multi-electron reaction and fast Al ion diffusion of δ-MnO2 cathode materials in rechargeable aluminum batteries via first-principle calculations. Chinese Chemical Letters, 2024, 35(4): 108589-. doi: 10.1016/j.cclet.2023.108589
Kongchuan Wu , Dandan Lu , Jianbin Lin , Ting-Bin Wen , Wei Hao , Kai Tan , Hui-Jun Zhang . Elucidating ligand effects in rhodium(Ⅲ)-catalyzed arene–alkene coupling reactions. Chinese Chemical Letters, 2024, 35(5): 108906-. doi: 10.1016/j.cclet.2023.108906
Luyao Lu , Chen Zhu , Fei Li , Pu Wang , Xi Kang , Yong Pei , Manzhou Zhu . Ligand effects on geometric structures and catalytic activities of atomically precise copper nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(10): 100411-100411. doi: 10.1016/j.cjsc.2024.100411