Citation: Sobia Imtiaz, Muhammad Siddiq, Ayesha Kausar, Sedra Tul Muntha, Jaweria Ambreen, Iram Bibi. A Review Featuring Fabrication, Properties and Applications of Carbon Nanotubes (CNTs) Reinforced Polymer and Epoxy Nanocomposites[J]. Chinese Journal of Polymer Science, ;2018, 36(4): 445-461. doi: 10.1007/s10118-018-2045-7 shu

A Review Featuring Fabrication, Properties and Applications of Carbon Nanotubes (CNTs) Reinforced Polymer and Epoxy Nanocomposites

  • Corresponding author: Muhammad Siddiq, m_sidiq12@yahoo.com
  • Received Date: 25 August 2017
    Accepted Date: 16 September 2017
    Available Online: 30 November 2017

  • Carbon nanotubes (CNTs) have long been recognized as the stiffest and strongest man-made material known to date. In addition, their high electrical conductivity has roused interest in the areas of electrical appliances and communication related applications. However, due to their miniature size, the excellent properties of these nanostructures can only be exploited if they are homogeneously embedded into light-weight matrices as those offered by a whole series of engineering polymers. In order to enhance their chemical affinity to engineering polymer matrices, chemical modification of the graphitic sidewalls and tips is necessary. The mechanical and electrical properties to date of a whole range of nanocomposites of various carbon nanotube contents are also reviewed in this attempt to facilitate progress in this emerging area. Recently, carbonaceous nano-fillers such as graphene and carbon nanotubes (CNTs) play a promising role due to their better structural and functional properties and broad range of applications in every field. Since CNTs usually form stabilized bundles due to van der Waals interactions, they are extremely difficult to disperse and align in a polymer matrix. The biggest issues in the preparation of CNTs reinforced composites reside in efficient dispersion of CNTs into a polymer matrix, the assessment of the dispersion, and the alignment and control of the CNTs in the matrix. An overview of various CNT functionalization methods is given. In particular, CNT functionalization using click chemistry and the preparation of CNT composites employing hyperbranched polymers are stressed as potential techniques to achieve good CNT dispersion. In addition, discussions on mechanical, thermal, electrical, electrochemical and applications of polymer/CNT composites are also included.
  • 加载中
    1. [1]

      Bauhofer W., Kovacs J. Z.. A review and analysis of electrical percolation in carbon nanotube polymer composites[J]. Compos. Sci. Technol., 2009,69(10):1486-1498. doi: 10.1016/j.compscitech.2008.06.018

    2. [2]

      Pötschke P., Abdel-Goad M., Alig I., Dudkin S., Lellinger D.. Rheological and dielectrical characterization of melt mixed polycarbonate-multiwalled carbon nanotube composites[J]. Polymer, 2004,45(26):8863-8870. doi: 10.1016/j.polymer.2004.10.040

    3. [3]

      Bibi S., Yasin T., Hassan S., Riaz M., Nawaz M.. Chitosan/CNTs green nanocomposite membrane:synthesis, swelling and polyaromatic hydrocarbons removal[J]. Mater. Sci. Eng., C, 2015,46:359-365. doi: 10.1016/j.msec.2014.10.057

    4. [4]

      Mendoza N. M., Goyanes S., Chiliotte C., Bekeris V., Rubiolo G., Candal R.. Magnetic binary nanofillers[J]. Physica B, 2012,407(16):3203-3205. doi: 10.1016/j.physb.2011.12.065

    5. [5]

      Tan Y., Zhang H., Liu H. H., Hou L. C., Jin Y. M., Zhang X. X.. 4-Aminobenzoic acid functionalized PAN-base carbon fibers in mild polyphosphoric acid/phosphorous pentoxide[J]. Adv. Mater. Res., 2011,332:219-222.  

    6. [6]

      Assali M., Leal M. P., Fernández I., Romero-Gomez P., Baati R., Khiar N.. Improved non-covalent biofunctionalization of multi-walled carbon nanotubes using carbohydrate amphiphiles with a butterfly-like polyaromatic tail[J]. Nano Res., 2010,3(11):764-778. doi: 10.1007/s12274-010-0044-2

    7. [7]

      Kim M. T., Rhee K. Y., Park S. J., Hui D.. Effects of silane-modified carbon nanotubes on flexural and fracture behaviors of carbon nanotube-modified epoxy/basalt composites[J]. Compos. Part B-Eng., 2012,43(5):2298-2302. doi: 10.1016/j.compositesb.2011.12.007

    8. [8]

      Fu J., Huang X., Huang Y., Zhang J., Tang X.. One-pot noncovalent method to functionalize multi-walled carbon nanotubes using cyclomatrix-type polyphosphazenes[J]. Chem. Commun., 2009,9:1049-1051.  

    9. [9]

      Liu L., Etika K. C., Liao K. S., Hess L. A., Bergbreiter D. E., Grunlan J. C.. Comparison of covalently and noncovalently functionalized carbon nanotubes in epoxy[J]. Macromol. Rapid Commun., 2009,30(8):627-632. doi: 10.1002/marc.v30:8

    10. [10]

      Kingston C., Zepp R., Andrady A., Boverhof D., Fehir R., Hawkins D., Vejins V.. Release characteristics of selected carbon nanotube polymer composites[J]. Carbon, 2014,68:33-57. doi: 10.1016/j.carbon.2013.11.042

    11. [11]

      May, C. A., Tanaka, Y., "Epoxy Resin: Chemistry and Technology" Marcel Dekker, New York, 1973.

    12. [12]

      Xie H., Liu B., Yuan Z., Shen J., Cheng R.. Cure kinetics of carbon nanotube/tetrafunctional epoxy nanocomposites by isothermal differential scanning calorimetry[J]. J. Polym. Sci., Part B:Polym. Phys., 2004,42(20):3701-3712. doi: 10.1002/(ISSN)1099-0488

    13. [13]

      Jia W., Tchoudakov R., Joseph R., Narkis M., Siegmann A.. The conductivity behavior of multi-component epoxy, metal particle, carbon black, carbon fibril composites[J]. J. Appl. Polym. Sci., 2002,85(8):1706-1713. doi: 10.1002/(ISSN)1097-4628

    14. [14]

      Spitalsky Z., Tasis D., Papagelis K., Galiotis C.. Carbon nanotube-polymer composites:chemistry, processing, mechanical and electrical properties[J]. Prog. Polym. Sci., 2010,35(3):357-401. doi: 10.1016/j.progpolymsci.2009.09.003

    15. [15]

      Thakre P. R., Bisrat Y., Lagoudas D. C.. Electrical and mechanical properties of carbon nanotube-epoxy nanocomposites[J]. J. Appl. Polym. Sci., 2010,116(1):191-202. doi: 10.1002/app.v116:1

    16. [16]

      Bhadra S., Khastgir D., Singha N. K., Lee J. H.. Progress in preparation, processing and applications of polyaniline[J]. Prog. Polym. Sci., 2009,34(8):783-810. doi: 10.1016/j.progpolymsci.2009.04.003

    17. [17]

      Micheli D., Pastore R., Gradoni G., Primiani V. M., Moglie F., Marchetti M.. Reduction of satellite electromagnetic scattering by carbon nanostructured multilayers[J]. Acta Astronaut., 2013,88:61-73. doi: 10.1016/j.actaastro.2013.03.003

    18. [18]

      Micheli D., Apollo C., Pastore R., Barbera D., Morles R. B., Marchetti M., Moglie F.. Optimization of multilayer shields made of composite nanostructured materials[J]. IEEE Trans. Electromagn. Compat., 2012,54(1):60-69. doi: 10.1109/TEMC.2011.2171688

    19. [19]

      Micheli D., Pastore R., Apollo C., Marchetti M., Gradoni G., Primiani V. M., Moglie F.. Broadband electromagnetic absorbers using carbon nanostructure-based composites[J]. IEEE Trans. Microw. Theory Techn., 2011,59(10):2633-2646. doi: 10.1109/TMTT.2011.2160198

    20. [20]

      Iijima S.. Helical microtubules of graphitic carbon[J]. Nature, 1991,354:56-58. doi: 10.1038/354056a0

    21. [21]

      Abdalla M., Dean D., Theodore M., Fielding J., Nyairo E., Price G.. Magnetically processed carbon nanotube/epoxy nanocomposites:morphology, thermal, and mechanical properties[J]. Polymer, 2010,51(7):1614-1620. doi: 10.1016/j.polymer.2009.05.059

    22. [22]

      Ma P. C., Siddiqui N. A., Marom G., Kim J. K.. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites:a review[J]. Compos. Part A-Appl. S., 2010,41(10):1345-1367. doi: 10.1016/j.compositesa.2010.07.003

    23. [23]

      Kroto H. W., Heath J. R., Obrien S. C., Curl R. F., Smalley R. E.. Long carbon chain molecules in circumstellar shells[J]. Astrophys. J., 1987,314:352-355. doi: 10.1086/165065

    24. [24]

      Iijima S., Ichihashi T.. Single-shell carbon nanotubes of 1-nm diameter[J]. Nature, 1993,363:603-606. doi: 10.1038/363603a0

    25. [25]

      Bethune D. S., Klang C. H., De Vries M. S., Gorman G., Savoy R., Vazquez J., Beyers R.. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls[J]. Nature, 1993,363:605-607. doi: 10.1038/363605a0

    26. [26]

      Chou, T. W., "Microstructural design of fiber composites" Cambridge University Press, 2005.

    27. [27]

      Collins P. G., Avouris P.. Nanotubes for Electronics[J]. Sci. Am., 2000,283(6):62-69. doi: 10.1038/scientificamerican1200-62

    28. [28]

      Fan S., Chapline M. G., Franklin N. R., Tombler T. W., Cassell A. M., Dai H.. Self-oriented regular arrays of carbon nanotubes and their field emission properties[J]. Science, 1999,283(5401):512-514. doi: 10.1126/science.283.5401.512

    29. [29]

      Wong S. S., Joselevich E., Woolley A. T., Cheung C. L., Lieber C. M.. Covalently functionalized nanotubes as nanometre-sized probes in chemistry and biology[J]. Nature, 1998,394(6688):52-55. doi: 10.1038/27873

    30. [30]

      Rueckes T., Kim K., Joselevich E., Tseng G. Y., Cheung C. L., Lieber C. M.. Carbon nanotube-based nonvolatile random access memory for molecular computing[J]. Science, 2000,289(5476):94-97. doi: 10.1126/science.289.5476.94

    31. [31]

      Journet C., Maser W. K., Bernier P., Loiseau A., de la Chapelle M. L., Lefrant D. L. S., Fischer J. E.. Large-scale production of single-walled carbon nanotubes by the electric-arc technique[J]. Nature, 1997,388(6644):756-758. doi: 10.1038/41972

    32. [32]

      Rinzler A. G., Liu J., Dai H., Nikolaev P., Huffman C. B., Rodriguez-Macias F. J., Lee R. S.. Large-scale purification of single-wall carbon nanotubes:process, product, and characterization[J]. Appl. Phys. A, 1998,67(1):29-37.  

    33. [33]

      Nikolaev P., Bronikowski M. J., Bradley R. K., Rohmund F., Colbert D. T., Smith K. A., Smalley R. E.. Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide[J]. Chem. Phys. Lett., 1999,313(1):91-97.  

    34. [34]

      Ren Z. F., Huang Z. P., Wang D. Z., Wen J. G., Xu J. W., Wang J. H., Reed M. A.. Growth of a single freestanding multiwall carbon nanotube on each nanonickel dot[J]. Appl. Phys. Lett., 1999,75(8):1086-1088. doi: 10.1063/1.124605

    35. [35]

      Ren Z. F., Huang Z. P., Xu J. W., Wang J. H., Bush P., Siegal M. P., Provencio P. N.. Synthesis of large arrays of well-aligned carbon nanotubes on glass[J]. Science, 1998,282(5391):1105-1107. doi: 10.1126/science.282.5391.1105

    36. [36]

      Huang Z. P., Xu J. W., Ren Z. F., Wang J. H., Siegal M. P., Provencio P. N.. Growth of highly oriented carbon nanotubes by plasma-enhanced hot filament chemical vapor deposition[J]. Appl. Phys. Lett., 1998,73(26):3845-3847. doi: 10.1063/1.122912

    37. [37]

      Ambrogi V., Gentile G., Ducati C., Oliva M. C., Carfagna C.. Multiwalled carbon nanotubes functionalized with maleated poly (propylene) by a dry mechano-chemical process[J]. Polymer, 2012,53(2):291-299. doi: 10.1016/j.polymer.2011.11.048

    38. [38]

      Ebbesen T. W., Ajayan P. M.. Large-scale synthesis of carbon nanotubes[J]. Nature, 1992,358(6383):220-222. doi: 10.1038/358220a0

    39. [39]

      Zhang Y., Iijima S.. Formation of single-wall carbon nanotubes by laser ablation of fullerenes at low temperature[J]. Appl. Phys. Lett., 1999,75(20):3087-3089. doi: 10.1063/1.125239

    40. [40]

      Zhang X. X., Li Z. Q., Wen G. H., Fung K. K., Chen J., Li Y.. Microstructure and growth of bamboo-shaped carbon nanotubes[J]. Chem. Phys. Lett., 2001,333(6):509-514. doi: 10.1016/S0009-2614(00)01431-7

    41. [41]

      Bower C., Zhu W., Jin S., Zhou O.. Plasma-induced alignment of carbon nanotubes[J]. Appl. Phys. Lett., 2000,77(6):830-832. doi: 10.1063/1.1306658

    42. [42]

      Han Z., Fina A.. Thermal conductivity of carbon nanotubes and their polymer nanocomposites:a review[J]. Prog. Polym. Sci., 2011,36(7):914-944. doi: 10.1016/j.progpolymsci.2010.11.004

    43. [43]

      Costa P., Silva J., Ansón-Casaos A., Martinez M. T., Abad M. J., Viana J., Lanceros-Mendez S.. Effect of carbon nanotube type and functionalization on the electrical, thermal, mechanical and electromechanical properties of carbon nanotube/styrene-butadiene-styrene composites for large strain sensor applications[J]. Compos. Part B-Eng., 2014,61:136-146. doi: 10.1016/j.compositesb.2014.01.048

    44. [44]

      Karousis N., Tagmatarchis N., Tasis D.. Current progress on the chemical modification of carbon nanotubes[J]. Chem. Rev., 2010,110(9):5366-5397. doi: 10.1021/cr100018g

    45. [45]

      Yu R., Chen L., Liu Q., Lin J., Tan K. L., Ng S. C., Hor T. A.. Platinum deposition on carbon nanotubes via chemical modification[J]. Chem. Mater., 1998,10(3):718-722. doi: 10.1021/cm970364z

    46. [46]

      Ajayan P. M., Stephan O., Colliex C., Trauth D.. Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite[J]. Science, 1994,265(5176):1212-1212. doi: 10.1126/science.265.5176.1212

    47. [47]

      Safadi B., Andrews R., Grulke E. A.. Multiwalled carbon nanotube polymer composites:synthesis and characterization of thin films[J]. J. Appl. Polym. Sci., 2002,84(14):2660-2669. doi: 10.1002/(ISSN)1097-4628

    48. [48]

      Thostenson E. T., Chou T. W.. Aligned multi-walled carbon nanotube-reinforced composites:processing and mechanical characterization[J]. J. Phys. D Appl. Phys., 2002,35(16):L77-L80. doi: 10.1088/0022-3727/35/16/103

    49. [49]

      Xia H., Wang Q., Li K., Hu G. H.. Preparation of polypropylene/carbon nanotube composite powder with a solid-state mechanochemical pulverization process[J]. J. Appl. Polym. Sci., 2004,93(1):378-386. doi: 10.1002/(ISSN)1097-4628

    50. [50]

      Dondero W. E., Gorga R. E.. Morphological and mechanical properties of carbon nanotube/polymer composites via melt compounding[J]. J. Polym. Sci., Part B:Polym. Phys., 2006,44(5):864-878. doi: 10.1002/(ISSN)1099-0488

    51. [51]

      Velasco-Santos C., Martínez-Hernández A. L., Fisher F. T., Ruoff R., Castaño V. M.. Improvement of thermal and mechanical properties of carbon nanotube composites through chemical functionalization[J]. Chem. Mater., 2003,15(23):4470-4475. doi: 10.1021/cm034243c

    52. [52]

      Blond D., Barron V., Ruether M., Ryan K. P., Nicolosi V., Blau W. J., Coleman J. N.. Enhancement of modulus, strength, and toughness in poly(methyl methacrylate) based composites by the incorporation of poly(methyl methacrylate)-functionalized nanotubes[J]. Adv. Funct. Mater., 2006,16(12):1608-1614. doi: 10.1002/(ISSN)1616-3028

    53. [53]

      Weisenberger M. C., Grulke E. A., Jacques D., Rantell A. T., Andrewsa R.. Enhanced mechanical properties of polyacrylonitrile/multiwall carbon nanotube composite fibers[J]. J. Nanosci. Nanotechnol., 2003,3(6):535-539. doi: 10.1166/jnn.2003.239

    54. [54]

      Hou H., Ge J. J., Zeng J., Li Q., Reneker D. H., Greiner A., Cheng S. Z.. Electrospun polyacrylonitrile nanofibers containing a high concentration of well-aligned multiwall carbon nanotubes[J]. Chem. Mater., 2005,17(5):967-973. doi: 10.1021/cm0484955

    55. [55]

      Yang J., Hu J., Wang C., Qin Y., Guo Z.. Fabrication and characterization of soluble multi-walled carbon nanotubes reinforced P(MMA-co-EMA) composites[J]. Macromol. Mater. Eng., 2004,289(9):828-832. doi: 10.1002/(ISSN)1439-2054

    56. [56]

      Sandler J. K. W., Pegel S., Cadek M., Gojny F., Van Es M., Lohmar J., Shaffer M. S. P.. A comparative study of melt spun polyamide-12 fibers reinforced with carbon nanotubes and nanofibers[J]. Polymer, 2004,45(6):2001-2015. doi: 10.1016/j.polymer.2004.01.023

    57. [57]

      Bhattacharyya A. R., Pötschke P., Abdel-Goad M., Fischer D.. Effect of encapsulated SWNT on the mechanical properties of melt mixed PA12/SWNT composites[J]. Chem. Phys. Lett., 2004,392(1):28-33.  

    58. [58]

      Tai N. H., Yeh M. K., Liu J. H.. Enhancement of the mechanical properties of carbon nanotube/phenolic composites using a carbon nanotube network as the reinforcement[J]. Carbon, 2004,42(12):2774-2777.  

    59. [59]

      Loos M. R., Yang J., Feke D. L., Manas-Zloczower I., Unal S., Younes U.. Enhancement of fatigue life of polyurethane composites containing carbon nanotubes[J]. Compos. Part B-Eng., 2013,44(1):740-744. doi: 10.1016/j.compositesb.2012.01.038

    60. [60]

      Bortz D. R., Merino C., Martin-Gullon I.. Carbon nanofibers enhance the fracture toughness and fatigue performance of a structural epoxy system[J]. Compos. Sci. Technol., 2011,71(1):31-38. doi: 10.1016/j.compscitech.2010.09.015

    61. [61]

      Wang, C. F. ; Chang, F. C. ; Kuo, S. W. "Handbook of Polybenzoxazine" ed., Elsevier, Amsterdam, 2011, p 579.

    62. [62]

      Yang C. C., Lin Y. C., Wang P. I., Liaw D. J., Kuo S. W.. Polybenzoxazine/single-walled carbon nanotube nanocomposites stabilized through noncovalent bonding interactions[J]. Polymer, 2014,55(8):2044-2050. doi: 10.1016/j.polymer.2014.02.061

    63. [63]

      Chapartegui M., Barcena J., Irastorza X., Elizetxea C., Fernandez M., Santamaria A.. Analysis of the conditions to manufacture a MWCNT buckypaper/benzoxazine nanocomposite[J]. Compos. Sci. Technol., 2012,72(4):489-497. doi: 10.1016/j.compscitech.2011.12.001

    64. [64]

      Chen Q., Xu R., Yu D.. Multiwalled carbon nanotube/polybenzoxazine nanocomposites:preparation, characterization and properties[J]. Polymer, 2006,47(22):7711-7719. doi: 10.1016/j.polymer.2006.08.058

    65. [65]

      Huang J. M., Tsai M. F., Yang S. J., Chiu W. M.. Preparation and thermal properties of multiwalled carbon nanotube/polybenzoxazine nanocomposites[J]. J. Appl. Polym. Sci., 2011,122(3):1898-1904. doi: 10.1002/app.34290

    66. [66]

      Chang C. M., Liu Y. L.. Electrical conductivity enhancement of polymer/multiwalled carbon nanotube (MWCNT) composites by thermally-induced defunctionalization of MWCNTs[J]. ACS Appl. Mater. Interfaces, 2011,3(7):2204-2208. doi: 10.1021/am200558f

    67. [67]

      Dumas L., Bonnaud L., Olivier M., Poorteman M., Dubois P.. Facile preparation of a novel high performance benzoxazine-CNT based nano-hybrid network exhibiting outstanding thermo-mechanical properties[J]. Chem. Commun., 2013,49(83):9543-9545. doi: 10.1039/c3cc45179h

    68. [68]

      Al-Saleh M. H., Al-Saidi B. A., Al-Zoubi R. M.. Experimental and theoretical analysis of the mechanical and thermal properties of carbon nanotube/acrylonitrile-styrene-butadiene nanocom-posites[J]. Polymer, 2016,89:12-17. doi: 10.1016/j.polymer.2016.01.053

    69. [69]

      Al-Saleh M. H., Sundararaj U.. Microstructure, electrical, and electromagnetic interference shielding properties of carbon nanotube/acrylonitrile-butadiene-styrene nanocomposites[J]. J. Polym. Sci., Part B:Polym. Phys., 2012,50(19):1356-1362. doi: 10.1002/polb.v50.19

    70. [70]

      Al-Saleh M. H., Sundararaj U.. Morphological, electrical and electromagnetic interference shielding characterization of vapor grown carbon nanofiber/polystyrene nanocomposites[J]. Polym. Int., 2013,62(4):601-607. doi: 10.1002/pi.2013.62.issue-4

    71. [71]

      Kurahatti R. V., Surendranathan A. O., Kori S. A., Singh N., Kumar A. R., Srivastava S.. Defence applications of polymer nanocomposites[J]. Def. Sci. J., 2010,60(5):551-563. doi: 10.14429/dsj

    72. [72]

      de Volder M. F., Tawfick S. H., Baughman R. H., Hart A. J.. Carbon nanotubes:present and future commercial applications[J]. Science, 2013,339(6119):535-539. doi: 10.1126/science.1222453

    73. [73]

      Margolis, J. Ed. "Conductive polymers and plastics", Springer Science & Business Media, London, 2012.

    74. [74]

      Peng C., Zhang S., Jewell D., Chen G. Z.. Carbon nanotube and conducting polymer composites for supercapacitors[J]. Prog. Nat. Sci., 2008,18(7):777-788. doi: 10.1016/j.pnsc.2008.03.002

    75. [75]

      Ayad M. M., Salahuddin N., Shenashin M. A.. The optimum HCl concentration for the in situ polyaniline film formation[J]. Synth. Met., 2004,142(1):101-106.  

    76. [76]

      Liu H., Hu X. B., Wang J. Y., Boughton R.I.. Structure, conductivity, and thermopower of crystalline polyaniline synthesized by the ultrasonic irradiation polymerization method[J]. Macromolecules, 2002,35(25):9414-9419. doi: 10.1021/ma0119326

    77. [77]

      Li W., Chen J., Zhao J., Zhang J., Zhu J.. Application of ultrasonic irradiation in preparing conducting polymer as active materials for supercapacitor[J]. Mater. Lett., 2005,59(7):800-803. doi: 10.1016/j.matlet.2004.11.024

    78. [78]

      Swathy T. S., Jose M. A., Antony M. J.. AOT assisted preparation of ordered, conducting and dispersible core-shell nanostructured polythiophene-MWCNT nanocomposites[J]. Polymer, 2016,103:206-213. doi: 10.1016/j.polymer.2016.09.047

    79. [79]

      Konyushenko E. N., Stejskal J., Trchová M., Hradil J., Kovářová J., Prokeš J., Sapurina I.. Multi-wall carbon nanotubes coated with polyaniline[J]. Polymer, 2006,47(16):5715-5723. doi: 10.1016/j.polymer.2006.05.059

    80. [80]

      Heimann M., Wirts-Ruetters M., Boehme B., Wolter K. J.. Investigations of carbon nanotubes epoxy composites for electronics packaging[J]. IEEE 58th Electronic Components and Technology Conference., 2008:1731-1736.  

    81. [81]

      Mahapatra S. S., Yadav S. K., Yoo H. J., Cho J. W., Park J. S.. Highly branched polyurethane:synthesis, characterization and effects of branching on dispersion of carbon nanotubes[J]. Compos. Part B-Eng., 2013,45(1):165-171. doi: 10.1016/j.compositesb.2012.05.039

    82. [82]

      Yang Z., McElrath K., Bahr J., D'Souza N. A.. Effect of matrix glass transition on reinforcement efficiency of epoxy-matrix composites with single walled carbon nanotubes, multi-walled carbon nanotubes, carbon nanofibers and graphite[J]. Compos. Part B-Eng., 2012,43(4):2079-2086. doi: 10.1016/j.compositesb.2012.01.049

    83. [83]

      Kim M. T., Rhee K. Y., Lee J. H., Hui D., Lau A. K.. Property enhancement of a carbon fiber/epoxy composite by using carbon nanotubes[J]. Compos. Part B-Eng., 2011,42(5):1257-1261. doi: 10.1016/j.compositesb.2011.02.005

    84. [84]

      Halder S., Ghosh P. K., Goyat M. S., Ray S.. Ultrasonic dual mode mixing and its effect on tensile properties of SiO2-epoxy nanocomposite[J]. J. Adhes. Sci. Technol., 2013,27(2):111-124. doi: 10.1080/01694243.2012.701510

    85. [85]

      Ghosh P. K., Pathak A., Goyat M. S., Halder S.. Influence of nanoparticle weight fraction on morphology and thermal properties of epoxy/Ti2 nanocomposite[J]. J. Reinf. Plast. Compos., 2012,31(17):1180-1188. doi: 10.1177/0731684412455955

    86. [86]

      Halder S., Ghosh P. K., Goyat M. S.. Influence of ultrasonic dual mode mixing on morphology and mechanical properties of Zr2-epoxy nanocomposite[J]. High Perform. Polym., 2012,24(4):331-341. doi: 10.1177/0954008312440714

    87. [87]

      Chrissafis K., Bikiaris D.. Can nanoparticles really enhance thermal stability of polymers? Part Ⅰ:an overview on thermal decomposition of addition polymers[J]. Thermochim. Acta, 2011,523(1):1-24.  

    88. [88]

      Starkova O., Buschhorn S. T., Mannov E., Schulte K., Aniskevich A.. Creep and recovery of epoxy/MWCNT nanocomposites[J]. Compos. Part A-Appl. S., 2012,43(8):1212-1218. doi: 10.1016/j.compositesa.2012.03.015

    89. [89]

      Damian C. M., Garea S. A., Vasile E., Iovu H.. Covalent and non-covalent functionalized MWCNTs for improved thermo-mechanical properties of epoxy composites[J]. Compos. Part B-Eng., 2012,43(8):3507-3515. doi: 10.1016/j.compositesb.2011.11.052

    90. [90]

      Sahoo N. G., Cheng H. K. F., Li L., Chan S. H., Judeh Z., Zhao J.. Specific functionalization of carbon nanotubes for advanced polymer nanocomposites[J]. Adv. Funct. Mater., 2009,19(24):3962-3971. doi: 10.1002/(ISSN)1616-3028

    91. [91]

      Ma P. C., Zheng Q. B., Mäder E., Kim J. K.. Behavior of load transfer in functionalized carbon nanotube/epoxy nanocomposites[J]. Polymer, 2012,53(26):6081-6088. doi: 10.1016/j.polymer.2012.10.053

    92. [92]

      Hwang G. L., Shieh Y. T., Hwang K. C.. Efficient load transfer to polymer-grafted multiwalled carbon nanotubes in polymer composites[J]. Adv. Funct. Mater., 2004,14(5):487-491. doi: 10.1002/(ISSN)1616-3028

    93. [93]

      Rathore D. K., Prusty R. K., Ray B.C.. Mechanical, thermomechanical, and creep performance of CNT embedded epoxy at elevated temperatures:an emphasis on the role of carboxyl functionalization[J]. J. Appl. Polym. Sci., 2017. doi: 10.1002/app.44851

    94. [94]

      Garg M., Sharma S., Mehta R.. Pristine and amino functionalized carbon nanotubes reinforced glass fiber epoxy composites[J]. Compos. Part A-Appl. S., 2015,76:92-101. doi: 10.1016/j.compositesa.2015.05.012

    95. [95]

      Luan J., Zhang A., Zheng Y., Sun L.. Effect of pyrene-modified multiwalled carbon nanotubes on the properties of epoxy composites[J]. Compos. Part A-Appl. S., 2012,43(7):1032-1037. doi: 10.1016/j.compositesa.2012.02.005

    96. [96]

      Theodore M., Hosur M., Thomas J., Jeelani S.. Influence of functionalization on properties of MWCNT-epoxy nanocomposites[J]. Mater. Sci. Eng., A., 2011,528(3):1192-1200. doi: 10.1016/j.msea.2010.09.095

    97. [97]

      Tseng C. H., Wang C. C., Chen C. Y.. Functionalizing carbon nanotubes by plasma modification for the preparation of covalent-integrated epoxy composites[J]. Chem. Mater., 2007,19(2):308-315. doi: 10.1021/cm062277p

    98. [98]

      Starkova O., Buschhorn S. T., Mannov E., Schulte K., Aniskevich A.. Water transport in epoxy/MWCNT composites[J]. Eur. Polym. J., 2013,49(8):2138-2148. doi: 10.1016/j.eurpolymj.2013.05.010

    99. [99]

      Prolongo S. G., Gude M. R., Urena A.. Water uptake of epoxy composites reinforced with carbon nanofillers[J]. Compos. Part A-Appl. S., 2012,43(12):2169-2175. doi: 10.1016/j.compositesa.2012.07.014

    100. [100]

      Starkova O., Chandrasekaran S., Prado L. A. S. A., Tölle F., Mülhaupt R., Schulte K.. Hydrothermally resistant thermally reduced graphene oxide and multi-wall carbon nanotube based epoxy nanocomposites[J]. Polym. Degrad. Stab., 2013,98(2):519-526. doi: 10.1016/j.polymdegradstab.2012.12.005

    101. [101]

      Sudha J. D., Sivakala S., Prasanth R., Reena V. L., Nair P. R.. Development of electromagnetic shielding materials from the conductive blends of polyaniline and polyaniline-clay nanocomposite-EVA:Preparation and properties[J]. Compos. Sci. Technol., 2009,69(3):358-364.  

    102. [102]

      Krakovský I., Pleštil J., Almásy L.. Structure and swelling behaviour of hydrophilic epoxy networks investigated by SANS[J]. Polymer, 2006,47(1):218-226. doi: 10.1016/j.polymer.2005.11.021

    103. [103]

      Krakovský I., Varga M., Ferrer G. G., Serra R. S. I., Salmerón-Sánchez M.. Structure and properties of epoxy/polyaniline nanocomposites[J]. J. Non-Cryst. Solids, 2012,358(2):414-419. doi: 10.1016/j.jnoncrysol.2011.10.012

    104. [104]

      Deng H., Cao Q., Wang X., Chen Q., Kuang H., Wang X.. Studies on preparation and properties of the multi-walled carbon nanotubes (MWNTs)/epoxy nanocomposites[J]. Mater. Sci. Eng. A-Struct., 2011,528(18):5759-5763. doi: 10.1016/j.msea.2011.04.010

    105. [105]

      Deng L., Han M.. Microwave absorbing performances of multiwalled carbon nanotube composites with negative permeability[J]. Appl. Phys. Lett., 2007,91(2)023119. doi: 10.1063/1.2755875

    106. [106]

      Lin H., Zhu H., Guo L. Y.. Materials processing by simple shear[J]. Mater. Lett., 2007,61(2):3547-3550.  

    107. [107]

      Silva V. A., Folgueras L. D. C., Cândido G. M., Paula A. L. D., Rezende M. C., Costa M. L.. Nanostructured composites based on carbon nanotubes and epoxy resin for use as radar absorbing materials[J]. Mater. Res., 2013,16(6):1299-1308. doi: 10.1590/S1516-14392013005000146

    108. [108]

      Kim Y. J., Kim S. S.. Microwave absorbing properties of co-substituted Ni 2 W hexaferrites in Ka-band frequencies (26.5-40 GHz)[J]. IEEE Trans. Magn., 2002,38(5):3108-3110. doi: 10.1109/TMAG.2002.802483

    109. [109]

      Petrov V. M., Gagulin V. V.. Microwave absorbing materials[J]. Inorg. Mater., 2001,37(2):93-98. doi: 10.1023/A:1004171120638

    110. [110]

      Folgueras, L. D. C. ; Alves, M. A. ; Rezende, M. C. Electromagnetic radiation absorbing paints based on carbonyl iron and polyaniline. 2009 SBMO/IEEE MTT-S International Microwave And Optoelectronics Conference. 2009, 510-513. 

    111. [111]

      Yusoff A. N., Abdullah M. H.. Microwave electromagnetic and absorption properties of some LiZn ferrites[J]. J. Magn. Magn. Mater., 2004,269(2):271-280. doi: 10.1016/S0304-8853(03)00617-6

    112. [112]

      Sen R., Zhao B., Perea D., Itkis M. E., Hu H., Love J., Haddon R. C.. Preparation of single-walled carbon nanotube reinforced polystyrene and polyurethane nanofibers and membranes by electrospinning[J]. Nano Lett., 2004,4(3):459-464. doi: 10.1021/nl035135s

    113. [113]

      Chung D. D. L.. Electromagnetic interference shielding effectiveness of carbon materials[J]. Carbon, 2001,39(2):279-285. doi: 10.1016/S0008-6223(00)00184-6

    114. [114]

      Joo J., Lee C. Y.. High frequency electromagnetic interference shielding response of mixtures and multilayer films based on conducting polymers[J]. J. Appl. Phys., 2000,88(1):513-518. doi: 10.1063/1.373688

    115. [115]

      Hu J., Jia F., Song Y. F.. Engineering high-performance polyoxometalate/PANI/MWNTs nanocomposite anode materials for lithium ion batteries[J]. Chem. Eng. J., 2017,326:273-280. doi: 10.1016/j.cej.2017.05.153

    116. [116]

      Xue L., Wang W., Guo Y., Liu G., Wan P.. Flexible polyaniline/carbon nanotube nanocomposite film-based electronic gas sensors[J]. Sensor. Actuat. B-Chem., 2017,244:47-53. doi: 10.1016/j.snb.2016.12.064

    117. [117]

      Kumar A., Ghosh P. K., Yadav K. L., Kumar K.. Thermo-mechanical and anti-corrosive properties of MWCNT/epoxy nanocomposite fabricated by innovative dispersion technique[J]. Compos. Part B-Eng., 2017,113:291-299. doi: 10.1016/j.compositesb.2017.01.046

    118. [118]

      Vertuccio L., Guadagno L., Spinelli G., Lamberti P., Tucci V., Russo S.. Piezoresistive properties of resin reinforced with carbon nanotubes for health-monitoring of aircraft primary structures[J]. Compos. Part B-Eng., 2016,107:192-202. doi: 10.1016/j.compositesb.2016.09.061

    119. [119]

      Saadattalab V., Shakeri A., Gholami H.. Effect of CNTs and nano ZnO on physical and mechanical properties of polyaniline composites applicable in energy devices[J]. Prog. Nat. Sci., 2016,26(6):517-522. doi: 10.1016/j.pnsc.2016.09.005

    120. [120]

      Zhang B., Shi R., Zhang Y., Pan C.. CNTs/TiO2 composites and its electrochemical properties after UV light irradiation[J]. Prog. Nat. Sci., 2013,23(2):164-169. doi: 10.1016/j.pnsc.2013.03.002

    121. [121]

      Olad A., Barati M., Behboudi S.. Preparation of PANI/epoxy/Zn nanocomposite using Zn nanoparticles and epoxy resin as additives and investigation of its corrosion protection behavior on iron[J]. Prog. Org. Coat., 2012,74(1):221-227. doi: 10.1016/j.porgcoat.2011.12.012

    122. [122]

      Diamanti K., Soutis C.. Structural health monitoring techniques for aircraft composite structures[J]. Prog. Aerosp. Sci., 2010,46(8):342-352. doi: 10.1016/j.paerosci.2010.05.001

    123. [123]

      Gohardani O., Elola M. C., Elizetxea C.. Potential and prospective implementation of carbon nanotubes on next generation aircraft and space vehicles:a review of current and expected applications in aerospace sciences[J]. Prog. Aerosp. Sci., 2014,70:42-68. doi: 10.1016/j.paerosci.2014.05.002

    124. [124]

      Gohardani A. S., Doulgeris G., Singh R.. Challenges of future aircraft propulsion:a review of distributed propulsion technology and its potential application for the electric commercial aircraft[J]. Prog. Aerosp. Sci., 2011,47(5):369-391. doi: 10.1016/j.paerosci.2010.09.001

  • 加载中
    1. [1]

      Hui GuMingyue GaoKuan ShenTianli ZhangJunhao ZhangXiangjun ZhengXingmei GuoYuanjun LiuFu CaoHongxing GuQinghong KongShenglin Xiong . F127 assisted fabrication of Ge/rGO/CNTs nanocomposites with three-dimensional network structure for efficient lithium storage. Chinese Chemical Letters, 2024, 35(9): 109273-. doi: 10.1016/j.cclet.2023.109273

    2. [2]

      Zhaoru ChenXiaoxu LiuHaonan ChenJialong LiXiaofeng WangJianfeng Zhu . Application of epoxy resin in cultural relics protection. Chinese Chemical Letters, 2024, 35(4): 109194-. doi: 10.1016/j.cclet.2023.109194

    3. [3]

      Junchen PengXue YinDandan DongZhongyuan GuoQinqin WangMinmin LiuFei HeBin DaiChaofeng Huang . Promotion effect of epoxy group neighboring single-atom Cu site on acetylene hydrochlorination. Chinese Chemical Letters, 2024, 35(6): 109508-. doi: 10.1016/j.cclet.2024.109508

    4. [4]

      Benjian Xin Rui Wang Lili Liu Zhiqiang Niu . Metal-organic framework derived MnO@C/CNTs composite for high-rate lithium-based semi-solid flow batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100116-100116. doi: 10.1016/j.cjsc.2023.100116

    5. [5]

      Zixu XiePengfei ZhangZiyao ZhangChen ChenXing Wang . The choice of antimicrobial polymers: Hydrophilic or hydrophobic?. Chinese Chemical Letters, 2024, 35(9): 109768-. doi: 10.1016/j.cclet.2024.109768

    6. [6]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    7. [7]

      Mengjun SunZhi WangJvhui JiangXiaobing WangChuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393

    8. [8]

      Huimin Gao Zhuochen Yu Xuze Zhang Xiangkun Yu Jiyuan Xing Youliang Zhu Hu-Jun Qian Zhong-Yuan Lu . A mini review of the recent progress in coarse-grained simulation of polymer systems. Chinese Journal of Structural Chemistry, 2024, 43(5): 100266-100266. doi: 10.1016/j.cjsc.2024.100266

    9. [9]

      Dong LvXuelei LiuWei LiQiang ZhangXinhong YuYanchun Han . Single droplet formation by controlling the viscoelasticity of polymer solutions during inkjet printing. Chinese Chemical Letters, 2024, 35(6): 109401-. doi: 10.1016/j.cclet.2023.109401

    10. [10]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    11. [11]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    12. [12]

      Pengcheng SuShizheng ChenZhihong YangNingning ZhongChenzi JiangWanbin Li . Vapor-phase postsynthetic amination of hypercrosslinked polymers for efficient iodine capture. Chinese Chemical Letters, 2024, 35(9): 109357-. doi: 10.1016/j.cclet.2023.109357

    13. [13]

      Zhenzhong MEIHongyu WANGXiuqi KANGYongliang SHAOJinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081

    14. [14]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    15. [15]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    16. [16]

      Yuanzhe Lu Yuanqin Zhu Linfeng Zhong Dingshan Yu . Long-lifespan aqueous alkaline and acidic batteries enabled by redox conjugated covalent organic polymer anodes. Chinese Journal of Structural Chemistry, 2024, 43(3): 100249-100249. doi: 10.1016/j.cjsc.2024.100249

    17. [17]

      Qianqian SongYunting ZhangJianli LiangSi LiuJian ZhuXingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797

    18. [18]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    19. [19]

      Xin LiXuan DingJunkun ZhouHui ShiZhenxi DaiJiayi LiuYongcun MaPenghui ShaoLiming YangXubiao Luo . Utilizing synergistic effects of bifunctional polymer hydrogel PAM-PAMPS for selective capture of Pb(Ⅱ) from wastewater. Chinese Chemical Letters, 2024, 35(7): 109158-. doi: 10.1016/j.cclet.2023.109158

    20. [20]

      Lei ZhouYoujun ZhouLizhen FangYiqiao BaiYujia MengLiang LiJie YangYong Yao . Pillar[5]arene based artificial light-harvesting supramolecular polymer for efficient and recyclable photocatalytic applications. Chinese Chemical Letters, 2024, 35(9): 109509-. doi: 10.1016/j.cclet.2024.109509

Metrics
  • PDF Downloads(0)
  • Abstract views(1042)
  • HTML views(45)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return