A Review Featuring Fabrication, Properties and Applications of Carbon Nanotubes (CNTs) Reinforced Polymer and Epoxy Nanocomposites
- Corresponding author: Muhammad Siddiq, m_sidiq12@yahoo.com
Citation:
Sobia Imtiaz, Muhammad Siddiq, Ayesha Kausar, Sedra Tul Muntha, Jaweria Ambreen, Iram Bibi. A Review Featuring Fabrication, Properties and Applications of Carbon Nanotubes (CNTs) Reinforced Polymer and Epoxy Nanocomposites[J]. Chinese Journal of Polymer Science,
;2018, 36(4): 445-461.
doi:
10.1007/s10118-018-2045-7
Bauhofer W., Kovacs J. Z.. A review and analysis of electrical percolation in carbon nanotube polymer composites[J]. Compos. Sci. Technol., 2009,69(10):1486-1498. doi: 10.1016/j.compscitech.2008.06.018
Pötschke P., Abdel-Goad M., Alig I., Dudkin S., Lellinger D.. Rheological and dielectrical characterization of melt mixed polycarbonate-multiwalled carbon nanotube composites[J]. Polymer, 2004,45(26):8863-8870. doi: 10.1016/j.polymer.2004.10.040
Bibi S., Yasin T., Hassan S., Riaz M., Nawaz M.. Chitosan/CNTs green nanocomposite membrane:synthesis, swelling and polyaromatic hydrocarbons removal[J]. Mater. Sci. Eng., C, 2015,46:359-365. doi: 10.1016/j.msec.2014.10.057
Mendoza N. M., Goyanes S., Chiliotte C., Bekeris V., Rubiolo G., Candal R.. Magnetic binary nanofillers[J]. Physica B, 2012,407(16):3203-3205. doi: 10.1016/j.physb.2011.12.065
Tan Y., Zhang H., Liu H. H., Hou L. C., Jin Y. M., Zhang X. X.. 4-Aminobenzoic acid functionalized PAN-base carbon fibers in mild polyphosphoric acid/phosphorous pentoxide[J]. Adv. Mater. Res., 2011,332:219-222.
Assali M., Leal M. P., Fernández I., Romero-Gomez P., Baati R., Khiar N.. Improved non-covalent biofunctionalization of multi-walled carbon nanotubes using carbohydrate amphiphiles with a butterfly-like polyaromatic tail[J]. Nano Res., 2010,3(11):764-778. doi: 10.1007/s12274-010-0044-2
Kim M. T., Rhee K. Y., Park S. J., Hui D.. Effects of silane-modified carbon nanotubes on flexural and fracture behaviors of carbon nanotube-modified epoxy/basalt composites[J]. Compos. Part B-Eng., 2012,43(5):2298-2302. doi: 10.1016/j.compositesb.2011.12.007
Fu J., Huang X., Huang Y., Zhang J., Tang X.. One-pot noncovalent method to functionalize multi-walled carbon nanotubes using cyclomatrix-type polyphosphazenes[J]. Chem. Commun., 2009,9:1049-1051.
Liu L., Etika K. C., Liao K. S., Hess L. A., Bergbreiter D. E., Grunlan J. C.. Comparison of covalently and noncovalently functionalized carbon nanotubes in epoxy[J]. Macromol. Rapid Commun., 2009,30(8):627-632. doi: 10.1002/marc.v30:8
Kingston C., Zepp R., Andrady A., Boverhof D., Fehir R., Hawkins D., Vejins V.. Release characteristics of selected carbon nanotube polymer composites[J]. Carbon, 2014,68:33-57. doi: 10.1016/j.carbon.2013.11.042
May, C. A., Tanaka, Y., "Epoxy Resin: Chemistry and Technology" Marcel Dekker, New York, 1973.
Xie H., Liu B., Yuan Z., Shen J., Cheng R.. Cure kinetics of carbon nanotube/tetrafunctional epoxy nanocomposites by isothermal differential scanning calorimetry[J]. J. Polym. Sci., Part B:Polym. Phys., 2004,42(20):3701-3712. doi: 10.1002/(ISSN)1099-0488
Jia W., Tchoudakov R., Joseph R., Narkis M., Siegmann A.. The conductivity behavior of multi-component epoxy, metal particle, carbon black, carbon fibril composites[J]. J. Appl. Polym. Sci., 2002,85(8):1706-1713. doi: 10.1002/(ISSN)1097-4628
Spitalsky Z., Tasis D., Papagelis K., Galiotis C.. Carbon nanotube-polymer composites:chemistry, processing, mechanical and electrical properties[J]. Prog. Polym. Sci., 2010,35(3):357-401. doi: 10.1016/j.progpolymsci.2009.09.003
Thakre P. R., Bisrat Y., Lagoudas D. C.. Electrical and mechanical properties of carbon nanotube-epoxy nanocomposites[J]. J. Appl. Polym. Sci., 2010,116(1):191-202. doi: 10.1002/app.v116:1
Bhadra S., Khastgir D., Singha N. K., Lee J. H.. Progress in preparation, processing and applications of polyaniline[J]. Prog. Polym. Sci., 2009,34(8):783-810. doi: 10.1016/j.progpolymsci.2009.04.003
Micheli D., Pastore R., Gradoni G., Primiani V. M., Moglie F., Marchetti M.. Reduction of satellite electromagnetic scattering by carbon nanostructured multilayers[J]. Acta Astronaut., 2013,88:61-73. doi: 10.1016/j.actaastro.2013.03.003
Micheli D., Apollo C., Pastore R., Barbera D., Morles R. B., Marchetti M., Moglie F.. Optimization of multilayer shields made of composite nanostructured materials[J]. IEEE Trans. Electromagn. Compat., 2012,54(1):60-69. doi: 10.1109/TEMC.2011.2171688
Micheli D., Pastore R., Apollo C., Marchetti M., Gradoni G., Primiani V. M., Moglie F.. Broadband electromagnetic absorbers using carbon nanostructure-based composites[J]. IEEE Trans. Microw. Theory Techn., 2011,59(10):2633-2646. doi: 10.1109/TMTT.2011.2160198
Iijima S.. Helical microtubules of graphitic carbon[J]. Nature, 1991,354:56-58. doi: 10.1038/354056a0
Abdalla M., Dean D., Theodore M., Fielding J., Nyairo E., Price G.. Magnetically processed carbon nanotube/epoxy nanocomposites:morphology, thermal, and mechanical properties[J]. Polymer, 2010,51(7):1614-1620. doi: 10.1016/j.polymer.2009.05.059
Ma P. C., Siddiqui N. A., Marom G., Kim J. K.. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites:a review[J]. Compos. Part A-Appl. S., 2010,41(10):1345-1367. doi: 10.1016/j.compositesa.2010.07.003
Kroto H. W., Heath J. R., Obrien S. C., Curl R. F., Smalley R. E.. Long carbon chain molecules in circumstellar shells[J]. Astrophys. J., 1987,314:352-355. doi: 10.1086/165065
Iijima S., Ichihashi T.. Single-shell carbon nanotubes of 1-nm diameter[J]. Nature, 1993,363:603-606. doi: 10.1038/363603a0
Bethune D. S., Klang C. H., De Vries M. S., Gorman G., Savoy R., Vazquez J., Beyers R.. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls[J]. Nature, 1993,363:605-607. doi: 10.1038/363605a0
Chou, T. W., "Microstructural design of fiber composites" Cambridge University Press, 2005.
Collins P. G., Avouris P.. Nanotubes for Electronics[J]. Sci. Am., 2000,283(6):62-69. doi: 10.1038/scientificamerican1200-62
Fan S., Chapline M. G., Franklin N. R., Tombler T. W., Cassell A. M., Dai H.. Self-oriented regular arrays of carbon nanotubes and their field emission properties[J]. Science, 1999,283(5401):512-514. doi: 10.1126/science.283.5401.512
Wong S. S., Joselevich E., Woolley A. T., Cheung C. L., Lieber C. M.. Covalently functionalized nanotubes as nanometre-sized probes in chemistry and biology[J]. Nature, 1998,394(6688):52-55. doi: 10.1038/27873
Rueckes T., Kim K., Joselevich E., Tseng G. Y., Cheung C. L., Lieber C. M.. Carbon nanotube-based nonvolatile random access memory for molecular computing[J]. Science, 2000,289(5476):94-97. doi: 10.1126/science.289.5476.94
Journet C., Maser W. K., Bernier P., Loiseau A., de la Chapelle M. L., Lefrant D. L. S., Fischer J. E.. Large-scale production of single-walled carbon nanotubes by the electric-arc technique[J]. Nature, 1997,388(6644):756-758. doi: 10.1038/41972
Rinzler A. G., Liu J., Dai H., Nikolaev P., Huffman C. B., Rodriguez-Macias F. J., Lee R. S.. Large-scale purification of single-wall carbon nanotubes:process, product, and characterization[J]. Appl. Phys. A, 1998,67(1):29-37.
Nikolaev P., Bronikowski M. J., Bradley R. K., Rohmund F., Colbert D. T., Smith K. A., Smalley R. E.. Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide[J]. Chem. Phys. Lett., 1999,313(1):91-97.
Ren Z. F., Huang Z. P., Wang D. Z., Wen J. G., Xu J. W., Wang J. H., Reed M. A.. Growth of a single freestanding multiwall carbon nanotube on each nanonickel dot[J]. Appl. Phys. Lett., 1999,75(8):1086-1088. doi: 10.1063/1.124605
Ren Z. F., Huang Z. P., Xu J. W., Wang J. H., Bush P., Siegal M. P., Provencio P. N.. Synthesis of large arrays of well-aligned carbon nanotubes on glass[J]. Science, 1998,282(5391):1105-1107. doi: 10.1126/science.282.5391.1105
Huang Z. P., Xu J. W., Ren Z. F., Wang J. H., Siegal M. P., Provencio P. N.. Growth of highly oriented carbon nanotubes by plasma-enhanced hot filament chemical vapor deposition[J]. Appl. Phys. Lett., 1998,73(26):3845-3847. doi: 10.1063/1.122912
Ambrogi V., Gentile G., Ducati C., Oliva M. C., Carfagna C.. Multiwalled carbon nanotubes functionalized with maleated poly (propylene) by a dry mechano-chemical process[J]. Polymer, 2012,53(2):291-299. doi: 10.1016/j.polymer.2011.11.048
Ebbesen T. W., Ajayan P. M.. Large-scale synthesis of carbon nanotubes[J]. Nature, 1992,358(6383):220-222. doi: 10.1038/358220a0
Zhang Y., Iijima S.. Formation of single-wall carbon nanotubes by laser ablation of fullerenes at low temperature[J]. Appl. Phys. Lett., 1999,75(20):3087-3089. doi: 10.1063/1.125239
Zhang X. X., Li Z. Q., Wen G. H., Fung K. K., Chen J., Li Y.. Microstructure and growth of bamboo-shaped carbon nanotubes[J]. Chem. Phys. Lett., 2001,333(6):509-514. doi: 10.1016/S0009-2614(00)01431-7
Bower C., Zhu W., Jin S., Zhou O.. Plasma-induced alignment of carbon nanotubes[J]. Appl. Phys. Lett., 2000,77(6):830-832. doi: 10.1063/1.1306658
Han Z., Fina A.. Thermal conductivity of carbon nanotubes and their polymer nanocomposites:a review[J]. Prog. Polym. Sci., 2011,36(7):914-944. doi: 10.1016/j.progpolymsci.2010.11.004
Costa P., Silva J., Ansón-Casaos A., Martinez M. T., Abad M. J., Viana J., Lanceros-Mendez S.. Effect of carbon nanotube type and functionalization on the electrical, thermal, mechanical and electromechanical properties of carbon nanotube/styrene-butadiene-styrene composites for large strain sensor applications[J]. Compos. Part B-Eng., 2014,61:136-146. doi: 10.1016/j.compositesb.2014.01.048
Karousis N., Tagmatarchis N., Tasis D.. Current progress on the chemical modification of carbon nanotubes[J]. Chem. Rev., 2010,110(9):5366-5397. doi: 10.1021/cr100018g
Yu R., Chen L., Liu Q., Lin J., Tan K. L., Ng S. C., Hor T. A.. Platinum deposition on carbon nanotubes via chemical modification[J]. Chem. Mater., 1998,10(3):718-722. doi: 10.1021/cm970364z
Ajayan P. M., Stephan O., Colliex C., Trauth D.. Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite[J]. Science, 1994,265(5176):1212-1212. doi: 10.1126/science.265.5176.1212
Safadi B., Andrews R., Grulke E. A.. Multiwalled carbon nanotube polymer composites:synthesis and characterization of thin films[J]. J. Appl. Polym. Sci., 2002,84(14):2660-2669. doi: 10.1002/(ISSN)1097-4628
Thostenson E. T., Chou T. W.. Aligned multi-walled carbon nanotube-reinforced composites:processing and mechanical characterization[J]. J. Phys. D Appl. Phys., 2002,35(16):L77-L80. doi: 10.1088/0022-3727/35/16/103
Xia H., Wang Q., Li K., Hu G. H.. Preparation of polypropylene/carbon nanotube composite powder with a solid-state mechanochemical pulverization process[J]. J. Appl. Polym. Sci., 2004,93(1):378-386. doi: 10.1002/(ISSN)1097-4628
Dondero W. E., Gorga R. E.. Morphological and mechanical properties of carbon nanotube/polymer composites via melt compounding[J]. J. Polym. Sci., Part B:Polym. Phys., 2006,44(5):864-878. doi: 10.1002/(ISSN)1099-0488
Velasco-Santos C., Martínez-Hernández A. L., Fisher F. T., Ruoff R., Castaño V. M.. Improvement of thermal and mechanical properties of carbon nanotube composites through chemical functionalization[J]. Chem. Mater., 2003,15(23):4470-4475. doi: 10.1021/cm034243c
Blond D., Barron V., Ruether M., Ryan K. P., Nicolosi V., Blau W. J., Coleman J. N.. Enhancement of modulus, strength, and toughness in poly(methyl methacrylate) based composites by the incorporation of poly(methyl methacrylate)-functionalized nanotubes[J]. Adv. Funct. Mater., 2006,16(12):1608-1614. doi: 10.1002/(ISSN)1616-3028
Weisenberger M. C., Grulke E. A., Jacques D., Rantell A. T., Andrewsa R.. Enhanced mechanical properties of polyacrylonitrile/multiwall carbon nanotube composite fibers[J]. J. Nanosci. Nanotechnol., 2003,3(6):535-539. doi: 10.1166/jnn.2003.239
Hou H., Ge J. J., Zeng J., Li Q., Reneker D. H., Greiner A., Cheng S. Z.. Electrospun polyacrylonitrile nanofibers containing a high concentration of well-aligned multiwall carbon nanotubes[J]. Chem. Mater., 2005,17(5):967-973. doi: 10.1021/cm0484955
Yang J., Hu J., Wang C., Qin Y., Guo Z.. Fabrication and characterization of soluble multi-walled carbon nanotubes reinforced P(MMA-co-EMA) composites[J]. Macromol. Mater. Eng., 2004,289(9):828-832. doi: 10.1002/(ISSN)1439-2054
Sandler J. K. W., Pegel S., Cadek M., Gojny F., Van Es M., Lohmar J., Shaffer M. S. P.. A comparative study of melt spun polyamide-12 fibers reinforced with carbon nanotubes and nanofibers[J]. Polymer, 2004,45(6):2001-2015. doi: 10.1016/j.polymer.2004.01.023
Bhattacharyya A. R., Pötschke P., Abdel-Goad M., Fischer D.. Effect of encapsulated SWNT on the mechanical properties of melt mixed PA12/SWNT composites[J]. Chem. Phys. Lett., 2004,392(1):28-33.
Tai N. H., Yeh M. K., Liu J. H.. Enhancement of the mechanical properties of carbon nanotube/phenolic composites using a carbon nanotube network as the reinforcement[J]. Carbon, 2004,42(12):2774-2777.
Loos M. R., Yang J., Feke D. L., Manas-Zloczower I., Unal S., Younes U.. Enhancement of fatigue life of polyurethane composites containing carbon nanotubes[J]. Compos. Part B-Eng., 2013,44(1):740-744. doi: 10.1016/j.compositesb.2012.01.038
Bortz D. R., Merino C., Martin-Gullon I.. Carbon nanofibers enhance the fracture toughness and fatigue performance of a structural epoxy system[J]. Compos. Sci. Technol., 2011,71(1):31-38. doi: 10.1016/j.compscitech.2010.09.015
Wang, C. F. ; Chang, F. C. ; Kuo, S. W. "Handbook of Polybenzoxazine" ed., Elsevier, Amsterdam, 2011, p 579.
Yang C. C., Lin Y. C., Wang P. I., Liaw D. J., Kuo S. W.. Polybenzoxazine/single-walled carbon nanotube nanocomposites stabilized through noncovalent bonding interactions[J]. Polymer, 2014,55(8):2044-2050. doi: 10.1016/j.polymer.2014.02.061
Chapartegui M., Barcena J., Irastorza X., Elizetxea C., Fernandez M., Santamaria A.. Analysis of the conditions to manufacture a MWCNT buckypaper/benzoxazine nanocomposite[J]. Compos. Sci. Technol., 2012,72(4):489-497. doi: 10.1016/j.compscitech.2011.12.001
Chen Q., Xu R., Yu D.. Multiwalled carbon nanotube/polybenzoxazine nanocomposites:preparation, characterization and properties[J]. Polymer, 2006,47(22):7711-7719. doi: 10.1016/j.polymer.2006.08.058
Huang J. M., Tsai M. F., Yang S. J., Chiu W. M.. Preparation and thermal properties of multiwalled carbon nanotube/polybenzoxazine nanocomposites[J]. J. Appl. Polym. Sci., 2011,122(3):1898-1904. doi: 10.1002/app.34290
Chang C. M., Liu Y. L.. Electrical conductivity enhancement of polymer/multiwalled carbon nanotube (MWCNT) composites by thermally-induced defunctionalization of MWCNTs[J]. ACS Appl. Mater. Interfaces, 2011,3(7):2204-2208. doi: 10.1021/am200558f
Dumas L., Bonnaud L., Olivier M., Poorteman M., Dubois P.. Facile preparation of a novel high performance benzoxazine-CNT based nano-hybrid network exhibiting outstanding thermo-mechanical properties[J]. Chem. Commun., 2013,49(83):9543-9545. doi: 10.1039/c3cc45179h
Al-Saleh M. H., Al-Saidi B. A., Al-Zoubi R. M.. Experimental and theoretical analysis of the mechanical and thermal properties of carbon nanotube/acrylonitrile-styrene-butadiene nanocom-posites[J]. Polymer, 2016,89:12-17. doi: 10.1016/j.polymer.2016.01.053
Al-Saleh M. H., Sundararaj U.. Microstructure, electrical, and electromagnetic interference shielding properties of carbon nanotube/acrylonitrile-butadiene-styrene nanocomposites[J]. J. Polym. Sci., Part B:Polym. Phys., 2012,50(19):1356-1362. doi: 10.1002/polb.v50.19
Al-Saleh M. H., Sundararaj U.. Morphological, electrical and electromagnetic interference shielding characterization of vapor grown carbon nanofiber/polystyrene nanocomposites[J]. Polym. Int., 2013,62(4):601-607. doi: 10.1002/pi.2013.62.issue-4
Kurahatti R. V., Surendranathan A. O., Kori S. A., Singh N., Kumar A. R., Srivastava S.. Defence applications of polymer nanocomposites[J]. Def. Sci. J., 2010,60(5):551-563. doi: 10.14429/dsj
de Volder M. F., Tawfick S. H., Baughman R. H., Hart A. J.. Carbon nanotubes:present and future commercial applications[J]. Science, 2013,339(6119):535-539. doi: 10.1126/science.1222453
Margolis, J. Ed. "Conductive polymers and plastics", Springer Science & Business Media, London, 2012.
Peng C., Zhang S., Jewell D., Chen G. Z.. Carbon nanotube and conducting polymer composites for supercapacitors[J]. Prog. Nat. Sci., 2008,18(7):777-788. doi: 10.1016/j.pnsc.2008.03.002
Ayad M. M., Salahuddin N., Shenashin M. A.. The optimum HCl concentration for the in situ polyaniline film formation[J]. Synth. Met., 2004,142(1):101-106.
Liu H., Hu X. B., Wang J. Y., Boughton R.I.. Structure, conductivity, and thermopower of crystalline polyaniline synthesized by the ultrasonic irradiation polymerization method[J]. Macromolecules, 2002,35(25):9414-9419. doi: 10.1021/ma0119326
Li W., Chen J., Zhao J., Zhang J., Zhu J.. Application of ultrasonic irradiation in preparing conducting polymer as active materials for supercapacitor[J]. Mater. Lett., 2005,59(7):800-803. doi: 10.1016/j.matlet.2004.11.024
Swathy T. S., Jose M. A., Antony M. J.. AOT assisted preparation of ordered, conducting and dispersible core-shell nanostructured polythiophene-MWCNT nanocomposites[J]. Polymer, 2016,103:206-213. doi: 10.1016/j.polymer.2016.09.047
Konyushenko E. N., Stejskal J., Trchová M., Hradil J., Kovářová J., Prokeš J., Sapurina I.. Multi-wall carbon nanotubes coated with polyaniline[J]. Polymer, 2006,47(16):5715-5723. doi: 10.1016/j.polymer.2006.05.059
Heimann M., Wirts-Ruetters M., Boehme B., Wolter K. J.. Investigations of carbon nanotubes epoxy composites for electronics packaging[J]. IEEE 58th Electronic Components and Technology Conference., 2008:1731-1736.
Mahapatra S. S., Yadav S. K., Yoo H. J., Cho J. W., Park J. S.. Highly branched polyurethane:synthesis, characterization and effects of branching on dispersion of carbon nanotubes[J]. Compos. Part B-Eng., 2013,45(1):165-171. doi: 10.1016/j.compositesb.2012.05.039
Yang Z., McElrath K., Bahr J., D'Souza N. A.. Effect of matrix glass transition on reinforcement efficiency of epoxy-matrix composites with single walled carbon nanotubes, multi-walled carbon nanotubes, carbon nanofibers and graphite[J]. Compos. Part B-Eng., 2012,43(4):2079-2086. doi: 10.1016/j.compositesb.2012.01.049
Kim M. T., Rhee K. Y., Lee J. H., Hui D., Lau A. K.. Property enhancement of a carbon fiber/epoxy composite by using carbon nanotubes[J]. Compos. Part B-Eng., 2011,42(5):1257-1261. doi: 10.1016/j.compositesb.2011.02.005
Halder S., Ghosh P. K., Goyat M. S., Ray S.. Ultrasonic dual mode mixing and its effect on tensile properties of SiO2-epoxy nanocomposite[J]. J. Adhes. Sci. Technol., 2013,27(2):111-124. doi: 10.1080/01694243.2012.701510
Ghosh P. K., Pathak A., Goyat M. S., Halder S.. Influence of nanoparticle weight fraction on morphology and thermal properties of epoxy/Ti2 nanocomposite[J]. J. Reinf. Plast. Compos., 2012,31(17):1180-1188. doi: 10.1177/0731684412455955
Halder S., Ghosh P. K., Goyat M. S.. Influence of ultrasonic dual mode mixing on morphology and mechanical properties of Zr2-epoxy nanocomposite[J]. High Perform. Polym., 2012,24(4):331-341. doi: 10.1177/0954008312440714
Chrissafis K., Bikiaris D.. Can nanoparticles really enhance thermal stability of polymers? Part Ⅰ:an overview on thermal decomposition of addition polymers[J]. Thermochim. Acta, 2011,523(1):1-24.
Starkova O., Buschhorn S. T., Mannov E., Schulte K., Aniskevich A.. Creep and recovery of epoxy/MWCNT nanocomposites[J]. Compos. Part A-Appl. S., 2012,43(8):1212-1218. doi: 10.1016/j.compositesa.2012.03.015
Damian C. M., Garea S. A., Vasile E., Iovu H.. Covalent and non-covalent functionalized MWCNTs for improved thermo-mechanical properties of epoxy composites[J]. Compos. Part B-Eng., 2012,43(8):3507-3515. doi: 10.1016/j.compositesb.2011.11.052
Sahoo N. G., Cheng H. K. F., Li L., Chan S. H., Judeh Z., Zhao J.. Specific functionalization of carbon nanotubes for advanced polymer nanocomposites[J]. Adv. Funct. Mater., 2009,19(24):3962-3971. doi: 10.1002/(ISSN)1616-3028
Ma P. C., Zheng Q. B., Mäder E., Kim J. K.. Behavior of load transfer in functionalized carbon nanotube/epoxy nanocomposites[J]. Polymer, 2012,53(26):6081-6088. doi: 10.1016/j.polymer.2012.10.053
Hwang G. L., Shieh Y. T., Hwang K. C.. Efficient load transfer to polymer-grafted multiwalled carbon nanotubes in polymer composites[J]. Adv. Funct. Mater., 2004,14(5):487-491. doi: 10.1002/(ISSN)1616-3028
Rathore D. K., Prusty R. K., Ray B.C.. Mechanical, thermomechanical, and creep performance of CNT embedded epoxy at elevated temperatures:an emphasis on the role of carboxyl functionalization[J]. J. Appl. Polym. Sci., 2017. doi: 10.1002/app.44851
Garg M., Sharma S., Mehta R.. Pristine and amino functionalized carbon nanotubes reinforced glass fiber epoxy composites[J]. Compos. Part A-Appl. S., 2015,76:92-101. doi: 10.1016/j.compositesa.2015.05.012
Luan J., Zhang A., Zheng Y., Sun L.. Effect of pyrene-modified multiwalled carbon nanotubes on the properties of epoxy composites[J]. Compos. Part A-Appl. S., 2012,43(7):1032-1037. doi: 10.1016/j.compositesa.2012.02.005
Theodore M., Hosur M., Thomas J., Jeelani S.. Influence of functionalization on properties of MWCNT-epoxy nanocomposites[J]. Mater. Sci. Eng., A., 2011,528(3):1192-1200. doi: 10.1016/j.msea.2010.09.095
Tseng C. H., Wang C. C., Chen C. Y.. Functionalizing carbon nanotubes by plasma modification for the preparation of covalent-integrated epoxy composites[J]. Chem. Mater., 2007,19(2):308-315. doi: 10.1021/cm062277p
Starkova O., Buschhorn S. T., Mannov E., Schulte K., Aniskevich A.. Water transport in epoxy/MWCNT composites[J]. Eur. Polym. J., 2013,49(8):2138-2148. doi: 10.1016/j.eurpolymj.2013.05.010
Prolongo S. G., Gude M. R., Urena A.. Water uptake of epoxy composites reinforced with carbon nanofillers[J]. Compos. Part A-Appl. S., 2012,43(12):2169-2175. doi: 10.1016/j.compositesa.2012.07.014
Starkova O., Chandrasekaran S., Prado L. A. S. A., Tölle F., Mülhaupt R., Schulte K.. Hydrothermally resistant thermally reduced graphene oxide and multi-wall carbon nanotube based epoxy nanocomposites[J]. Polym. Degrad. Stab., 2013,98(2):519-526. doi: 10.1016/j.polymdegradstab.2012.12.005
Sudha J. D., Sivakala S., Prasanth R., Reena V. L., Nair P. R.. Development of electromagnetic shielding materials from the conductive blends of polyaniline and polyaniline-clay nanocomposite-EVA:Preparation and properties[J]. Compos. Sci. Technol., 2009,69(3):358-364.
Krakovský I., Pleštil J., Almásy L.. Structure and swelling behaviour of hydrophilic epoxy networks investigated by SANS[J]. Polymer, 2006,47(1):218-226. doi: 10.1016/j.polymer.2005.11.021
Krakovský I., Varga M., Ferrer G. G., Serra R. S. I., Salmerón-Sánchez M.. Structure and properties of epoxy/polyaniline nanocomposites[J]. J. Non-Cryst. Solids, 2012,358(2):414-419. doi: 10.1016/j.jnoncrysol.2011.10.012
Deng H., Cao Q., Wang X., Chen Q., Kuang H., Wang X.. Studies on preparation and properties of the multi-walled carbon nanotubes (MWNTs)/epoxy nanocomposites[J]. Mater. Sci. Eng. A-Struct., 2011,528(18):5759-5763. doi: 10.1016/j.msea.2011.04.010
Deng L., Han M.. Microwave absorbing performances of multiwalled carbon nanotube composites with negative permeability[J]. Appl. Phys. Lett., 2007,91(2)023119. doi: 10.1063/1.2755875
Lin H., Zhu H., Guo L. Y.. Materials processing by simple shear[J]. Mater. Lett., 2007,61(2):3547-3550.
Silva V. A., Folgueras L. D. C., Cândido G. M., Paula A. L. D., Rezende M. C., Costa M. L.. Nanostructured composites based on carbon nanotubes and epoxy resin for use as radar absorbing materials[J]. Mater. Res., 2013,16(6):1299-1308. doi: 10.1590/S1516-14392013005000146
Kim Y. J., Kim S. S.. Microwave absorbing properties of co-substituted Ni 2 W hexaferrites in Ka-band frequencies (26.5-40 GHz)[J]. IEEE Trans. Magn., 2002,38(5):3108-3110. doi: 10.1109/TMAG.2002.802483
Petrov V. M., Gagulin V. V.. Microwave absorbing materials[J]. Inorg. Mater., 2001,37(2):93-98. doi: 10.1023/A:1004171120638
Folgueras, L. D. C. ; Alves, M. A. ; Rezende, M. C. Electromagnetic radiation absorbing paints based on carbonyl iron and polyaniline. 2009 SBMO/IEEE MTT-S International Microwave And Optoelectronics Conference. 2009, 510-513.
Yusoff A. N., Abdullah M. H.. Microwave electromagnetic and absorption properties of some LiZn ferrites[J]. J. Magn. Magn. Mater., 2004,269(2):271-280. doi: 10.1016/S0304-8853(03)00617-6
Sen R., Zhao B., Perea D., Itkis M. E., Hu H., Love J., Haddon R. C.. Preparation of single-walled carbon nanotube reinforced polystyrene and polyurethane nanofibers and membranes by electrospinning[J]. Nano Lett., 2004,4(3):459-464. doi: 10.1021/nl035135s
Chung D. D. L.. Electromagnetic interference shielding effectiveness of carbon materials[J]. Carbon, 2001,39(2):279-285. doi: 10.1016/S0008-6223(00)00184-6
Joo J., Lee C. Y.. High frequency electromagnetic interference shielding response of mixtures and multilayer films based on conducting polymers[J]. J. Appl. Phys., 2000,88(1):513-518. doi: 10.1063/1.373688
Hu J., Jia F., Song Y. F.. Engineering high-performance polyoxometalate/PANI/MWNTs nanocomposite anode materials for lithium ion batteries[J]. Chem. Eng. J., 2017,326:273-280. doi: 10.1016/j.cej.2017.05.153
Xue L., Wang W., Guo Y., Liu G., Wan P.. Flexible polyaniline/carbon nanotube nanocomposite film-based electronic gas sensors[J]. Sensor. Actuat. B-Chem., 2017,244:47-53. doi: 10.1016/j.snb.2016.12.064
Kumar A., Ghosh P. K., Yadav K. L., Kumar K.. Thermo-mechanical and anti-corrosive properties of MWCNT/epoxy nanocomposite fabricated by innovative dispersion technique[J]. Compos. Part B-Eng., 2017,113:291-299. doi: 10.1016/j.compositesb.2017.01.046
Vertuccio L., Guadagno L., Spinelli G., Lamberti P., Tucci V., Russo S.. Piezoresistive properties of resin reinforced with carbon nanotubes for health-monitoring of aircraft primary structures[J]. Compos. Part B-Eng., 2016,107:192-202. doi: 10.1016/j.compositesb.2016.09.061
Saadattalab V., Shakeri A., Gholami H.. Effect of CNTs and nano ZnO on physical and mechanical properties of polyaniline composites applicable in energy devices[J]. Prog. Nat. Sci., 2016,26(6):517-522. doi: 10.1016/j.pnsc.2016.09.005
Zhang B., Shi R., Zhang Y., Pan C.. CNTs/TiO2 composites and its electrochemical properties after UV light irradiation[J]. Prog. Nat. Sci., 2013,23(2):164-169. doi: 10.1016/j.pnsc.2013.03.002
Olad A., Barati M., Behboudi S.. Preparation of PANI/epoxy/Zn nanocomposite using Zn nanoparticles and epoxy resin as additives and investigation of its corrosion protection behavior on iron[J]. Prog. Org. Coat., 2012,74(1):221-227. doi: 10.1016/j.porgcoat.2011.12.012
Diamanti K., Soutis C.. Structural health monitoring techniques for aircraft composite structures[J]. Prog. Aerosp. Sci., 2010,46(8):342-352. doi: 10.1016/j.paerosci.2010.05.001
Gohardani O., Elola M. C., Elizetxea C.. Potential and prospective implementation of carbon nanotubes on next generation aircraft and space vehicles:a review of current and expected applications in aerospace sciences[J]. Prog. Aerosp. Sci., 2014,70:42-68. doi: 10.1016/j.paerosci.2014.05.002
Gohardani A. S., Doulgeris G., Singh R.. Challenges of future aircraft propulsion:a review of distributed propulsion technology and its potential application for the electric commercial aircraft[J]. Prog. Aerosp. Sci., 2011,47(5):369-391. doi: 10.1016/j.paerosci.2010.09.001
Hui Gu , Mingyue Gao , Kuan Shen , Tianli Zhang , Junhao Zhang , Xiangjun Zheng , Xingmei Guo , Yuanjun Liu , Fu Cao , Hongxing Gu , Qinghong Kong , Shenglin Xiong . F127 assisted fabrication of Ge/rGO/CNTs nanocomposites with three-dimensional network structure for efficient lithium storage. Chinese Chemical Letters, 2024, 35(9): 109273-. doi: 10.1016/j.cclet.2023.109273
Zhaoru Chen , Xiaoxu Liu , Haonan Chen , Jialong Li , Xiaofeng Wang , Jianfeng Zhu . Application of epoxy resin in cultural relics protection. Chinese Chemical Letters, 2024, 35(4): 109194-. doi: 10.1016/j.cclet.2023.109194
Junchen Peng , Xue Yin , Dandan Dong , Zhongyuan Guo , Qinqin Wang , Minmin Liu , Fei He , Bin Dai , Chaofeng Huang . Promotion effect of epoxy group neighboring single-atom Cu site on acetylene hydrochlorination. Chinese Chemical Letters, 2024, 35(6): 109508-. doi: 10.1016/j.cclet.2024.109508
Dongmei Yao , Junsheng Zheng , Liming Jin , Xiaomin Meng , Zize Zhan , Runlin Fan , Cong Feng , Pingwen Ming . Effect of surface oxidation on the interfacial and mechanical properties in graphite/epoxy composites composite bipolar plates. Chinese Chemical Letters, 2024, 35(11): 109382-. doi: 10.1016/j.cclet.2023.109382
Yi Zhou , Yanzhen Liu , Yani Yan , Zonglin Yi , Yongfeng Li , Cheng-Meng Chen . Enhanced oxygen reduction reaction on La-Fe bimetal in porous N-doped carbon dodecahedra with CNTs wrapping. Chinese Chemical Letters, 2025, 36(1): 109569-. doi: 10.1016/j.cclet.2024.109569
Benjian Xin , Rui Wang , Lili Liu , Zhiqiang Niu . Metal-organic framework derived MnO@C/CNTs composite for high-rate lithium-based semi-solid flow batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100116-100116. doi: 10.1016/j.cjsc.2023.100116
Yixin Lu , Minghan Qin , Shixian Zhang , Zhen Liu , Wang Sun , Zhenhua Wang , Jinshuo Qiao , Kening Sun . Triple-conducting heterostructure anodes for electrochemical ethane nonoxidative dehydrogenation by protonic ceramic electrolysis cells. Chinese Chemical Letters, 2025, 36(4): 110567-. doi: 10.1016/j.cclet.2024.110567
Zixu Xie , Pengfei Zhang , Ziyao Zhang , Chen Chen , Xing Wang . The choice of antimicrobial polymers: Hydrophilic or hydrophobic?. Chinese Chemical Letters, 2024, 35(9): 109768-. doi: 10.1016/j.cclet.2024.109768
Hanying Li , Wee-Liat Ong . “Super-heterojunctioned” thermoelectric polymers. Chinese Chemical Letters, 2025, 36(2): 110523-. doi: 10.1016/j.cclet.2024.110523
Jie Zhou , Chuanxiang Zhang , Changchun Hu , Shuo Li , Yuan Liu , Zhu Chen , Song Li , Hui Chen , Rokayya Sami , Yan Deng . Electrochemical aptasensor based on black phosphorus-porous graphene nanocomposites for high-performance detection of Hg2+. Chinese Chemical Letters, 2024, 35(11): 109561-. doi: 10.1016/j.cclet.2024.109561
Wenhao Feng , Chunli Liu , Zheng Liu , Huan Pang . In-situ growth of N-doped graphene-like carbon/MOF nanocomposites for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(12): 109552-. doi: 10.1016/j.cclet.2024.109552
Jian Wang , Baohui Wang , Pin Ma , Yifei Zhang , Honghong Gong , Biyun Peng , Sen Liang , Yunchuan Xie , Hailong Wang . Regulation of uniformity and electric field distribution achieved highly energy storage performance in PVDF-based nanocomposites via continuous gradient structure. Chinese Chemical Letters, 2025, 36(4): 109714-. doi: 10.1016/j.cclet.2024.109714
Xiaoman Dang , Zhiying Wu , Tangxin Xiao , Zhouyu Wang , Leyong Wang . Highly robust supramolecular polymer networks crosslinked by metallacycles. Chinese Chemical Letters, 2024, 35(12): 110208-. doi: 10.1016/j.cclet.2024.110208
Yaohua Li , Qi Cao , Xuanhua Li . Tailoring the configuration of polymer passivators in perovskite solar cells. Chinese Journal of Structural Chemistry, 2025, 44(2): 100413-100413. doi: 10.1016/j.cjsc.2024.100413
Peng Meng , Qian-Cheng Luo , Aidan Brock , Xiaodong Wang , Mahboobeh Shahbazi , Aaron Micallef , John McMurtrie , Dongchen Qi , Yan-Zhen Zheng , Jingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542
Pengcheng Su , Shizheng Chen , Zhihong Yang , Ningning Zhong , Chenzi Jiang , Wanbin Li . Vapor-phase postsynthetic amination of hypercrosslinked polymers for efficient iodine capture. Chinese Chemical Letters, 2024, 35(9): 109357-. doi: 10.1016/j.cclet.2023.109357
Zhenzhong MEI , Hongyu WANG , Xiuqi KANG , Yongliang SHAO , Jinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081
Xiumei LI , Yanju HUANG , Bo LIU , Yaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109
Wei-Jia Wang , Kaihong Chen . Molecular-based porous polymers with precise sites for photoreduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(1): 109998-. doi: 10.1016/j.cclet.2024.109998
Xiumei LI , Linlin LI , Bo LIU , Yaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273