Citation: Li Zhou, Ling Shen, Jian Huang, Na Liu, Yuan-Yuan Zhu, Zong-Quan Wu. Optically Active Helical Polyisocyanides Bearing Chiral Phosphine Pendants: Facile Synthesis and Application in Enantioselective Rauhut-Currier Reaction[J]. Chinese Journal of Polymer Science, ;2018, 36(2): 163-170. doi: 10.1007/s10118-018-2044-8 shu

Optically Active Helical Polyisocyanides Bearing Chiral Phosphine Pendants: Facile Synthesis and Application in Enantioselective Rauhut-Currier Reaction

  • Corresponding author: Na Liu, liuna@hfut.edu.cn Zong-Quan Wu, zqwu@hfut.edu.cn
  • Received Date: 29 August 2017
    Accepted Date: 16 September 2017
    Available Online: 10 November 2017

  • Three novel enantiopure phenyl isocyanide monomers with BH3-protected phosphine functional group were designed and synthesized. Polymerization of these monomers using a alkyne-Pd(Ⅱ) complex as a catalyst led to the formation of respective helical polyisocyanides in high yields with controlled molecular weights (Mns) and narrow molecular weight distributions (Mw/Mns). Removing the protecting BH3 groups afforded helical poly(phenyl isocyanide)s bearing phosphine pendants. Thanks to the chiral induction of monomer, the isolated helical polyisocyanides showed high optical activity, as revealed by circular dichroism (CD) and absorption spectroscopies and polarimetry. The helical structures of these polymers were quite stable in various organic solvents with different polarities and in a wide temperature range. Moreover, these helical polymers could be used as organocatalysts and showed good performance in enantioselective cross Rauhut-Currier reaction. The enantiomeric excess (ee) values of the isolated products of cross Rauhut-Currier reaction could be up to 90%. The polymer organocatalysts could be easily recovered from the reaction mixtures and reused at least five times in the reaction without significant loss of their enantioselectivities and catalytic activities.
  • 加载中
    1. [1]

      Pauling L., Corey R. B., Branson H. R.. The structure of proteins: two hydrogen-bonded helical configurations of the polypeptide chain[J]. Proc. Natl. Acad. Sci. U. S. A., 1951,37(11):205-211.  

    2. [2]

      Watson J. D., Crick F. H. C.. Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid[J]. Nature, 1953,171:737-738. doi: 10.1038/171737a0

    3. [3]

      Nakano T., Okamoto Y.. Synthetic helical polymers: conformation and function[J]. Chem. Rev., 2001,101(12):4013-4038. doi: 10.1021/cr0000978

    4. [4]

      Liu X., Song C., Luo X. F., Yang W. T., Deng J. P.. "Sergeants and soldiers rule" in helical substitutedacetylene copolymer emulsions[J]. Chinese J. Polym. Sci., 2013,31(1):179-186. doi: 10.1007/s10118-013-1189-8

    5. [5]

      Wang R., Zhang J., Wan X. H.. Helical bulky polystyrene derivatives: chiral teleinduction and self-assembly[J]. Acta Polymerica Sinica (in Chinese), 2016(4):409-421.  

    6. [6]

      Lin S. W., Qian W. H., Huo H. J., L i, B. Z., Li Y., Yang. Y. G.. Preparation of optical active single-handed helical barium titanate nanotubes and characterization of dielectric properties.[J]. Chinese Chem. Lett., 2017,28(5):1111-1113. doi: 10.1016/j.cclet.2016.12.030

    7. [7]

      Schwartz E., Koepf M., Kitto H. J., Nolte R. J. M., Rowan A. E.. Helical poly(isocynides): past, present and future[J]. Polym. Chem., 2011,2(1):33-47. doi: 10.1039/C0PY00246A

    8. [8]

      Xue Y. X., Zhu Y. Y., Gao L. M., He X. Y., Liu N., Zhang W. Y., Yin J., Ding Y. S., Zhou H. P., Wu Z. Q.. Air-stable (phenylbuta-1, 3-diynyl)palladium(Ⅱ) complexes: highly active initiators for living polymerization of isocyanides[J]. J. Am. Chem. Soc., 2014,136(12):4706-4713. doi: 10.1021/ja5004747

    9. [9]

      Hu G., Li W., Hu Y., Xu A., Yan J., Liu L., Zhang X., Liu K., Zhang A. F.. Water-soluble chiral polyisocyanides showing thermoresponsive behavior[J]. Macromolecules, 2013,46(3):1124-1132. doi: 10.1021/ma302536t

    10. [10]

      Liu N., Ma C. H., Sun R. W., Huang J., Li C. L., Wu Z. Q.. Facile synthesis and chiral recognition of block and star copolymers containing stereoregular helical poly(phenyl isocyanide) and polyethylene glycol blocks[J]. Polym. Chem., 2017,8(14):2152-2163. doi: 10.1039/C7PY00028F

    11. [11]

      Dong L. Q., Hu D. F., Duan X. M., Wang Z. P., Zhang K. X., Zhu X. F., Sun H., Zhang Y. S., Xu J. K.. Synthesis and characterization of D-/L-methionine grafted PEDOTs for selective recognition of 3, 4-dihydroxyphenylalanine enantiomers[J]. Chinese J. Polym. Sci., 2016,34(5):563-577. doi: 10.1007/s10118-016-1772-x

    12. [12]

      Yang L., Tang Y., Liu N., Liu C. H., Ding Y. S., Wu Z. Q.. Facile synthesis of hybrid silica nanoparticles grafted with helical poly(phenyl isocyanide)s and their enantioselective crystallization ability[J]. Macromolecules, 2016,49(20):7692-7702. doi: 10.1021/acs.macromol.6b01870

    13. [13]

      Zhang C. H., Wang H. L., Geng Q. Q., Yang T. T., Liu L. J., Sakai R., Satoh T., Kakuchi T., Okamoto Y.. Synthesis of helical poly(phenylacetylene)s with amide linkage bearing L-phenylalanine and L-phenylglycine ethyl ester pendants and their applications as chiral stationary phases for HPLC.[J]. Macromolecules, 2013,46(21):8406-8415. doi: 10.1021/ma4015802

    14. [14]

      Nagata Y., Nishikawa T., Suginome M.. Solvent effect on the sergeants-and-soldiers effect leading to bidirectional induction of single-handed helical sense of poly(quinoxaline-2, 3-diyl)s copolymers in aromatic solvents[J]. ACS Macro Lett., 2016,5(4):519-522. doi: 10.1021/acsmacrolett.6b00191

    15. [15]

      Tang Z. L., Iida H., Hu H. Y., Yashima E.. Remarkable enhancement of the enantioselectivity of an organocatalyzed asymmetric henry reaction assisted by helical poly(phenylacetylene)s bearing cinchona alkaloid pendants via an amide linkage[J]. ACS Macro Lett., 2012,1(2):261-265. doi: 10.1021/mz200161s

    16. [16]

      Cheerla R., Krishnan M.. Molecular origins of polymer-coupled helical motion of ions in a crystalline polymer electrolyte[J]. Macromolecules, 2016,49(2):700-707. doi: 10.1021/acs.macromol.5b02197

    17. [17]

      Akagi K.. Helical polyacetylene: asymmetric polymerization in a chiral liquid-crystal field[J]. Chem. Rev., 2009,109(11):5354-5401. doi: 10.1021/cr900198k

    18. [18]

      McQuade D. T., Pullen A. E., Swager T. M.. Conjugated polymer-based chemical sensors[J]. Chem. Rev., 2000,100(7):2537-2574. doi: 10.1021/cr9801014

    19. [19]

      Li G., Tan Z. K., Di D., Lai M. L., Jiang L., Lim J. H. W., Friend R. H., Greenham N. C.. Efficient light-emitting diodes based on nanocrystalline perovskite in a dielectric polymer matrix[J]. Nano Lett., 2015,15(4):2640-2644. doi: 10.1021/acs.nanolett.5b00235

    20. [20]

      Yang T., Deng X. X., Du F. S., Li Z. C.. Glucose-responsive hydrogels based on ABA triblock copolymers containing phenylboronic acid[J]. Acta Polymerica Sinica, 2014(11):1553-1560.  

    21. [21]

      Zhou L., Chu B. F., Xu X. Y., Xu L., Liu N., Wu Z. Q.. Significant improvement on enantioselectivity and diastereoselectivity of organocatalyzed asymmetric aldol reaction using helical polyisocyanides bearing proline pendants.[J]. ACS Macro Lett., 2017,6:824-829. doi: 10.1021/acsmacrolett.7b00439

    22. [22]

      Ishikawa M., Maeda K., Yashima E.. Macromolecular chirality induction on optically inactive poly(4-carboxyphenyl isocyanide) with chiral amines:  a dynamic conformational transition of poly(phenyl isocyanide) derivatives[J]. J. Am. Chem. Soc., 2002,124(25):7448-7458. doi: 10.1021/ja0259537

    23. [23]

      Nagata Y., Nishikawa T., Suginome M.. Solvent effect on the sergeants-and-soldiers effect leading to bidirectional induction of single-handed helical sense of poly(quinoxaline-2, 3-diyl)s copolymers in aromatic solvents[J]. ACS Macro Lett., 2016,5(4):519-522. doi: 10.1021/acsmacrolett.6b00191

    24. [24]

      Megens R. P., Roelfes G.. Asymmetric catalysis with helical polymers[J]. Chem. Eur. J., 2011,17(31):8514-8523. doi: 10.1002/chem.201100672

    25. [25]

      Gao Y. N., Shi M.. Phosphine-mediated enantioselective synthesis of carbocycles and heterocycles[J]. Chinese Chem. Lett., 2017,28(3):493-502. doi: 10.1016/j.cclet.2016.12.001

    26. [26]

      Wei Y., Shi M.. Multifunctional chiral phosphine organocatalysts in catalytic asymmetric Morita-Baylis-Hillman and related reactions[J]. Acc. Chem. Res., 2010,43(7):1005-1018. doi: 10.1021/ar900271g

    27. [27]

      Fan Y. C., Kwon O.. Advances in nucleophilic phosphine catalysis of alkenes, allenes, alkynes, and MBHADs[J]. Chem. Commun., 2013,49(99):11588-11619. doi: 10.1039/c3cc47368f

    28. [28]

      Zhou W., Su X., Tao M. N., Zhu C. Z., Zhao Q. J., Zhang J. L.. Chiral sulfinamide bisphosphine catalysts: design, synthesis, and application in highly enantioselective intermolecular cross-Rauhut-Currier reactions[J]. Angew. Chem. Int. Ed., 2015,54(49):14853-14857. doi: 10.1002/anie.201508108

    29. [29]

      Xiao H., Chai Z., Zheng C. W., Yang Y. Q., Liu W., Zhang J. K., Zhao G.. Asymmetric[3+2] cycloadditions of allenoates and dual activated olefins catalyzed by simple bifunctional N-acyl aminophosphines[J]. Angew. Chem. Int. Ed., 2010,49(26):4467-4470. doi: 10.1002/anie.201000446

    30. [30]

      Yao W. J., Dou X. W., Lu Y. X.. Highly enantioselective synthesis of 3, 4-dihydropyrans through a phosphine-catalyzed[4+2] annulation of allenones and β, γ-unsaturated α-keto esters[J]. J. Am. Chem. Soc., 2015,137(1):54-57. doi: 10.1021/ja5109358

    31. [31]

      Rauhut M. M. and Currier, H., US Pat. 3074999, 1963, Chem. Abstr., 1963, 58, 11224a.

    32. [32]

      Bharadwaj K. C.. Intramolecular Morita-Baylis-Hillman and Rauhut-Currier reactions. A catalytic and atom economic route for carbocycles and heterocycles[J]. RSC Adv., 2015,5(93):75923-75946. doi: 10.1039/C5RA13611C

    33. [33]

      Scanes R. J. H., Grossmann O., Grossmann A., Spring D. R.. Enantioselective synthesis of chromanonesvia a peptidic phosphane catalyzed Rauhut-Currier reaction[J]. Org. Lett., 2015,17(10):2462-2465. doi: 10.1021/acs.orglett.5b00971

    34. [34]

      Takizawa S., Nguyen T. M. N., Grossmann A., Enders D., Sasai H.. Enantioselective synthesis of α-alkylidene-γ-butyrolactones: intramolecular Rauhut-Currier reaction promoted by acid/base organocatalysts[J]. Angew. Chem. Int. Ed., 2012,51(22):5423-5426. doi: 10.1002/anie.201201542

    35. [35]

      Dong X. L., Liang L., Li E. Q., Huang Y.. Highly enantioselective intermolecular cross Rauhut-Currier reaction catalyzed by a multifunctional lewis base catalyst[J]. Angew. Chem. Int. Ed., 2015,54(5):1621-1624. doi: 10.1002/anie.201409744

    36. [36]

      Scanes R. J. H., Grossmann O., Grossmann A., Spring D. R.. Enantioselective synthesis of chromanones via a peptidic phosphane catalyzed Rauhut-Currier reaction[J]. Org. Lett., 2015,17(10):2462-2465. doi: 10.1021/acs.orglett.5b00971

    37. [37]

      Chen M. J., Zhang Z. M., Yu Z. Z., Qiu H. L., Ma B., Wu H. H., Zhang J. L.. Polymer-bound chiral gold-based complexes as efficient heterogeneous catalysts for enantioselectivity tunable cycloaddition[J]. ACS Catalysis, 2015,5(12):7488-7492. doi: 10.1021/acscatal.5b01963

    38. [38]

      Yukinari K., Daiki T., Hiroshi D., Yasuhiro U.. A combinatorial approach to heterogeneous asymmetric aquacatalysis with amphiphilic polymer-supported chiral phosphine-palladium complexes[J]. Adv. Synth. Catal., 2006,348(12-13):1561-1566. doi: 10.1002/(ISSN)1615-4169

    39. [39]

      Chen P., Su X., Zhou W., Xiao Y. J., Zhang J. L.. Novel chiral sulfonamide phosphines: valuable precursors to chiral β-aminophosphines[J]. Tetrahedro, 2016,72(21):2700-2706. doi: 10.1016/j.tet.2015.12.002

    40. [40]

      CCDC (1569595).

    41. [41]

      Su M., Liu N., Wang Q., Wang H., Yin J., Wu Z. Q.. Facile synthesis of poly(phenyleneethynylene)-block-polyisocyanide copolymers via two mechanistically distinct, sequential living polymerizations using a single catalyst[J]. Macromolecules, 2016,49(1):110-119. doi: 10.1021/acs.macromol.5b02555

    42. [42]

      Yin J., Xu L., Han X., Zhou L., Li C. L., Wu Z. Q.. A facile synthetic route to stereoregular helical poly(phenyl isocyanide)s with defined pendants and controlled helicity[J]. Polym. Chem., 2017,8:545-556. doi: 10.1039/C6PY01881E

  • 加载中
    1. [1]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    2. [2]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

    3. [3]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    4. [4]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    5. [5]

      Jing RENRuikui YANXiaoli CHENHuali CUIHua YANGJijiang WANG . Synthesis and fluorescence sensing of a highly sensitive and multi-response cadmium coordination polymer. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 574-586. doi: 10.11862/CJIC.20240287

    6. [6]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    7. [7]

      Jun GuoZhenbang ZhuangWanqiang LiuGang Huang . "Co-coordination force" assisted rigid-flexible coupling crystalline polymer for high-performance aqueous zinc-organic batteries. Chinese Chemical Letters, 2024, 35(9): 109803-. doi: 10.1016/j.cclet.2024.109803

    8. [8]

      Xiaoman DangZhiying WuTangxin XiaoZhouyu WangLeyong Wang . Highly robust supramolecular polymer networks crosslinked by metallacycles. Chinese Chemical Letters, 2024, 35(12): 110208-. doi: 10.1016/j.cclet.2024.110208

    9. [9]

      Yaohua Li Qi Cao Xuanhua Li . Tailoring the configuration of polymer passivators in perovskite solar cells. Chinese Journal of Structural Chemistry, 2025, 44(2): 100413-100413. doi: 10.1016/j.cjsc.2024.100413

    10. [10]

      Mengjun SunZhi WangJvhui JiangXiaobing WangChuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393

    11. [11]

      Huimin Gao Zhuochen Yu Xuze Zhang Xiangkun Yu Jiyuan Xing Youliang Zhu Hu-Jun Qian Zhong-Yuan Lu . A mini review of the recent progress in coarse-grained simulation of polymer systems. Chinese Journal of Structural Chemistry, 2024, 43(5): 100266-100266. doi: 10.1016/j.cjsc.2024.100266

    12. [12]

      Dong LvXuelei LiuWei LiQiang ZhangXinhong YuYanchun Han . Single droplet formation by controlling the viscoelasticity of polymer solutions during inkjet printing. Chinese Chemical Letters, 2024, 35(6): 109401-. doi: 10.1016/j.cclet.2023.109401

    13. [13]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    14. [14]

      Shaohua ZhangXiaojuan DaiWei HaoLiyao LiuYingqiao MaYe ZouJia ZhuChong-an Di . A first-principles study of the Nernst effect in doped polymer. Chinese Chemical Letters, 2024, 35(12): 109837-. doi: 10.1016/j.cclet.2024.109837

    15. [15]

      Xu Li Yue Zhao Tingli Ma . Improved polymer electrolyte interfacial contact via constructing vertically aligned fillers. Chinese Journal of Structural Chemistry, 2025, 44(2): 100406-100406. doi: 10.1016/j.cjsc.2024.100406

    16. [16]

      Yuanzhe Lu Yuanqin Zhu Linfeng Zhong Dingshan Yu . Long-lifespan aqueous alkaline and acidic batteries enabled by redox conjugated covalent organic polymer anodes. Chinese Journal of Structural Chemistry, 2024, 43(3): 100249-100249. doi: 10.1016/j.cjsc.2024.100249

    17. [17]

      Qianqian SongYunting ZhangJianli LiangSi LiuJian ZhuXingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797

    18. [18]

      Xin LiXuan DingJunkun ZhouHui ShiZhenxi DaiJiayi LiuYongcun MaPenghui ShaoLiming YangXubiao Luo . Utilizing synergistic effects of bifunctional polymer hydrogel PAM-PAMPS for selective capture of Pb(Ⅱ) from wastewater. Chinese Chemical Letters, 2024, 35(7): 109158-. doi: 10.1016/j.cclet.2023.109158

    19. [19]

      Lei ZhouYoujun ZhouLizhen FangYiqiao BaiYujia MengLiang LiJie YangYong Yao . Pillar[5]arene based artificial light-harvesting supramolecular polymer for efficient and recyclable photocatalytic applications. Chinese Chemical Letters, 2024, 35(9): 109509-. doi: 10.1016/j.cclet.2024.109509

    20. [20]

      Fereshte Hassanzadeh-AfruziMina AziziIman ZareEhsan Nazarzadeh ZareAnwarul HasanSiavash IravaniPooyan MakvandiYi Xu . Advanced metal-organic frameworks-polymer platforms for accelerated dermal wound healing. Chinese Chemical Letters, 2024, 35(11): 109564-. doi: 10.1016/j.cclet.2024.109564

Metrics
  • PDF Downloads(0)
  • Abstract views(847)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return