Citation: Jun-Qing Song, Yi-Xin Liu, Hong-Dong Zhang. An Efficient Algorithm for Self-consistent Field Theory Calculations of Complex Self-assembled Structures of Block Copolymer Melts[J]. Chinese Journal of Polymer Science, ;2018, 36(4): 488-496. doi: 10.1007/s10118-018-2037-7 shu

An Efficient Algorithm for Self-consistent Field Theory Calculations of Complex Self-assembled Structures of Block Copolymer Melts

  • Corresponding author: Yi-Xin Liu, lyx@fudan.edu.cn
  • Received Date: 2 July 2017
    Accepted Date: 8 September 2017
    Available Online: 29 December 2017

  • Self-consistent field theory (SCFT), as a state-of-the-art technique for studying the self-assembly of block copolymers, is attracting continuous efforts to improve its accuracy and efficiency. Here we present a fourth-order exponential time differencing Runge-Kutta algorithm (ETDRK4) to solve the modified diffusion equation (MDE) which is the most time-consuming part of a SCFT calculation. By making a careful comparison with currently most efficient and popular algorithms, we demonstrate that the ETDRK4 algorithm significantly reduces the number of chain contour steps in solving the MDE, resulting in a boost of the overall computation efficiency, while it shares the same spatial accuracy with other algorithms. In addition, to demonstrate the power of our ETDRK4 algorithm, we apply it to compute the phase boundaries of the bicontinuous gyroid phase in the strong segregation regime and to verify the existence of the triple point of the O70 phase, the lamellar phase and the cylindrical phase.
  • 加载中
    1. [1]

      Edwards S. F.. Statistical mechanics of polymer with excluded volume[J]. Proc. Phys. Soc. London, 1965,85(546P):613-624.  

    2. [2]

      de Gennes, P. G. "Scaling concepts in polymer physics", Cornell University Press, Ithaca 1969.

    3. [3]

      Helfand E.. Block copolymer theory. 3. Statistical-mechanics of microdomain structure[J]. Macromolecules, 1975,8(4):552-556. doi: 10.1021/ma60046a032

    4. [4]

      Hong K. M., Noolandi J.. Theory of inhomogeneous multicomponent polymer systems[J]. Macromolecules, 1981,14(3):727-736. doi: 10.1021/ma50004a051

    5. [5]

      Fredrickson, G. H. "The equilibrium theory of inhomogeneous polymers", Oxford University Press, New York 2006.

    6. [6]

      Matsen M. W.. Undulation instability in block-copolymer lamellae subjected to a perpendicular electric field[J]. Soft Matter, 2006,2(12):1048-1056. doi: 10.1039/b611064a

    7. [7]

      Bates F. S., Hillmyer M. A., Lodge T. P., Bates C. M., Delaney K. T., Fredrickson G. H.. Multiblock polymers:panacea or pandora's box?[J]. Science, 2012,336(6080):434-440. doi: 10.1126/science.1215368

    8. [8]

      Matsen M. W., Thompson R. B.. Equilibrium behavior of symmetric ABA triblock copolymer melts[J]. J. Chem. Phys., 1999,111(15):7139-7146. doi: 10.1063/1.480006

    9. [9]

      Tang P., Qiu F., Zhang H. D., Yang Y. L.. Morphology and phase diagram of complex block copolymers:ABC star triblock copolymers[J]. J. Phys. Chem. B, 2004,108(24):8434-8438. doi: 10.1021/jp037911q

    10. [10]

      Xie N., Liu M. J., Deng H. L., Li W. H., Qiu F., Shi A. C.. Macromolecular metallurgy of binary mesocrystals via designed multiblock terpolymers[J]. J. Am. Chem. Soc., 2014,136(8):2974-2977. doi: 10.1021/ja412760k

    11. [11]

      Duchs D., Sullivan D. E.. Entropy-induced smectic phases in rod-coil copolymers[J]. J. Phys. Condens. Matter, 2002,14(46):12189-12202. doi: 10.1088/0953-8984/14/46/321

    12. [12]

      Matsen M. W.. Thin films of block copolymer[J]. J. Chem. Phys., 1997,106(18):7781-7791. doi: 10.1063/1.473778

    13. [13]

      Leibler L.. Theory of microphase separation in block co-polymers[J]. Macromolecules, 1980,13(6):1602-1617. doi: 10.1021/ma60078a047

    14. [14]

      Semenov A. N.. Contribution to the theory of microphase layering in block-copolymer melts[J]. Zh. Eksp. Teor. Fiz., 1985,88(4):1242-1256.  

    15. [15]

      Matsen M. W., Schick M.. Stable and unstable phases of a diblock copolymer melt[J]. Phys. Rev. Lett., 1994,72(16):2660-2663. doi: 10.1103/PhysRevLett.72.2660

    16. [16]

      Drolet F., Fredrickson G. H.. Combinatorial screening of complex block copolymer assembly with self-consistent field theory[J]. Phys. Rev. Lett., 1999,83(21):4317-4320. doi: 10.1103/PhysRevLett.83.4317

    17. [17]

      Rasmussen K. O., Kalosakas G.. Improved numerical algorithm for exploring block copolymer mesophases[J]. J. Polym. Sci., Part B:Polym. Phys., 2002,40(16):1777-1783. doi: 10.1002/(ISSN)1099-0488

    18. [18]

      Cochran E. W., Garcia-Cervera C. J., Fredrickson G. H.. Stability of the gyroid phase in diblock copolymers at strong segregation[J]. Macromolecules, 2006,39(7):2449-2451. doi: 10.1021/ma0527707

    19. [19]

      Ranjan A., Qin J., Morse D. C.. Linear response and stability of ordered phases of block copolymer melts[J]. Macromolecules, 2008,41(3):942-954. doi: 10.1021/ma0714316

    20. [20]

      Tong C. H., Zhu Y. J., Zhang H. D., Qiu F., Tang P., Yang Y. L.. The self-consistent field study of the adsorption of flexible polyelectrolytes onto two charged nano-objects[J]. J. Phys. Chem. B, 2011,115(39):11307-11317. doi: 10.1021/jp204904b

    21. [21]

      Stasiak P., Matsen M. W.. Efficiency of pseudo-spectral algorithms with Anderson mixing for the SCFT of periodic block-copolymer phases[J]. Eur. Phys. J. E, 2011,34(10)110. doi: 10.1140/epje/i2011-11110-0

    22. [22]

      Liu Y. X., Zhang H. D.. Exponential time differencing methods with Chebyshev collocation for polymers confined by interacting surfaces[J]. J. Chem. Phys., 2014,140(22)224101. doi: 10.1063/1.4881516

    23. [23]

      Cox S. M., Matthews P. C.. Exponential time differencing for stiff systems[J]. J. Comput. Phys., 2002,176(2):430-455. doi: 10.1006/jcph.2002.6995

    24. [24]

      Kassam A. K., Trefethen L. N.. Fourth-order time-stepping for stiff PDEs[J]. SIAM J. Sci. Comput.,, 2005,26(4):1214-1233. doi: 10.1137/S1064827502410633

    25. [25]

      Krogstad, S. "Topics in numerical Lie group integration", Ph. D. thesis, The University of Bergen, 2003.

    26. [26]

      Matsen M. W., Bates F. S.. Block copolymer microstructures in the intermediate-segregation regime[J]. J. Chem. Phys., 1997,106(6):2436-2448. doi: 10.1063/1.473153

    27. [27]

      Oberkampf, W. L.; Roy, C. J. "Verification and validation for scientific computing", Cambridge University Press, New York, 2010.

    28. [28]

      Thomas E. L., Alward D. B., Kinning D. J., Martin D. C., Handlin D. L., Fetters L. J.. Ordered bicontinuous doublediamond structure of star block copolymers-a new equilibrium microdomain morphology[J]. Macromolecules, 1986,19(8):2197-2202. doi: 10.1021/ma00162a016

    29. [29]

      Matsen M. W., Bates F. S.. Origins of complex self-assembly in block copolymers[J]. Macromolecules, 1996,29(23):7641-7644. doi: 10.1021/ma960744q

    30. [30]

      Matsen M. W.. Fast and accurate SCFT calculations for periodic block-copolymer morphologies using the spectral method with Anderson mixing[J]. Eur. Phys. J. E,, 2009,30(4):361-369. doi: 10.1140/epje/i2009-10534-3

    31. [31]

      Epps T. H., Cochran E. W., Bailey T. S., Waletzko R. S., Hardy C. M., Bates F. S.. Ordered network phases in linear poly(isoprene-b-styrene-b-ethylene oxide) triblock copolymers[J]. Macromolecules, 2004,37(22):8325-8341. doi: 10.1021/ma048762s

    32. [32]

      Bailey T. S., Hardy C. M., Epps T. H., Bates F. S.. A noncubic triply periodic network morphology in poly(isoprene-b-styrene-b-ethylene oxide) triblock copolymers[J]. Macromolecules, 2002,35(18):7007-7017. doi: 10.1021/ma011716x

    33. [33]

      Tyler C. A., Morse D. C.. Orthorhombic Fddd network in triblock and diblock copolymer melts[J]. Phys. Rev. Lett., 2005,94(20)208302. doi: 10.1103/PhysRevLett.94.208302

    34. [34]

      Press, W. H., Teukolsky, S. A. Vetterling, W. T. and Flannery, B. P., "Numerical recipes 3rd edition:The art of scientific computing", Cambridge University Press, New York 2007.

  • 加载中
    1. [1]

      Xin Dong Tianqi Chen Jing Liang Lei Wang Huajie Wu Zhijin Xu Junhua Luo Li-Na Li . Structure design of lead-free chiral-polar perovskites for sensitive self-powered X-ray detection. Chinese Journal of Structural Chemistry, 2024, 43(6): 100256-100256. doi: 10.1016/j.cjsc.2024.100256

    2. [2]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    3. [3]

      Qian WangTing GaoXiwen LuHangchao WangMinggui XuLongtao RenZheng ChangWen Liu . Nanophase separated, grafted alternate copolymer styrene-maleic anhydride as an efficient room temperature solid state lithium ion conductor. Chinese Chemical Letters, 2024, 35(7): 108887-. doi: 10.1016/j.cclet.2023.108887

    4. [4]

      Pengcheng SuShizheng ChenZhihong YangNingning ZhongChenzi JiangWanbin Li . Vapor-phase postsynthetic amination of hypercrosslinked polymers for efficient iodine capture. Chinese Chemical Letters, 2024, 35(9): 109357-. doi: 10.1016/j.cclet.2023.109357

    5. [5]

      Ce LiangQiuhui SunAdel Al-SalihyMengxin ChenPing Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306

    6. [6]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    7. [7]

      Yuhang Li Yang Ling Yanhang Ma . Application of three-dimensional electron diffraction in structure determination of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100237-100237. doi: 10.1016/j.cjsc.2024.100237

    8. [8]

      Hai-Ling Wang Zhong-Hong Zhu Hua-Hong Zou . Structure and assembly mechanism of high-nuclear lanthanide-oxo clusters. Chinese Journal of Structural Chemistry, 2024, 43(9): 100372-100372. doi: 10.1016/j.cjsc.2024.100372

    9. [9]

      Wenjia WangXingyue HeXiaojie WangTiantian ZhaoOsamu MuraokaGenzoh TanabeWeijia XieTianjiao ZhouLei XingQingri JinHulin Jiang . Glutathione-depleted cyclodextrin pseudo-polyrotaxane nanoparticles for anti-inflammatory oxaliplatin (Ⅳ) prodrug delivery and enhanced colorectal cancer therapy. Chinese Chemical Letters, 2024, 35(4): 108656-. doi: 10.1016/j.cclet.2023.108656

    10. [10]

      Shengyu ZhaoQinhao ShiWuliang FengYang LiuXinxin YangXingli ZouXionggang LuYufeng Zhao . Suppression of multistep phase transitions of O3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(5): 108606-. doi: 10.1016/j.cclet.2023.108606

    11. [11]

      Xue XinQiming QuIslam E. KhalilYuting HuangMo WeiJie ChenWeina ZhangFengwei HuoWenjing Liu . Hetero-phase zirconia encapsulated with Au nanoparticles for boosting electrocatalytic nitrogen reduction. Chinese Chemical Letters, 2024, 35(5): 108654-. doi: 10.1016/j.cclet.2023.108654

    12. [12]

      Tian YangYi LiuLina HuaYaoyao ChenWuqian GuoHaojie XuXi ZengChanghao GaoWenjing LiJunhua LuoZhihua Sun . Lead-free hybrid two-dimensional double perovskite with switchable dielectric phase transition. Chinese Chemical Letters, 2024, 35(6): 108707-. doi: 10.1016/j.cclet.2023.108707

    13. [13]

      Shu LinKezhen Qi . Phase-dependent lithium-alloying reactions for lithium-metal batteries. Chinese Chemical Letters, 2024, 35(4): 109431-. doi: 10.1016/j.cclet.2023.109431

    14. [14]

      Wangyan HuKe LiXiangnan DouNing LiXiayan Wang . Nano-sized stationary phase packings retained by single-particle frit for microchip liquid chromatography. Chinese Chemical Letters, 2024, 35(4): 108806-. doi: 10.1016/j.cclet.2023.108806

    15. [15]

      Zhaohong ChenMengzhen LiJinfei LanShengqian HuXiaogang Chen . Organic ferroelastic enantiomers with high Tc and large dielectric switching ratio triggered by order-disorder and displacive phase transition. Chinese Chemical Letters, 2024, 35(10): 109548-. doi: 10.1016/j.cclet.2024.109548

    16. [16]

      Zhi-Yuan YueHua-Kai LiNa WangShan-Shan LiuLe-Ping MiaoHeng-Yun YeChao Shi . Dehydration-triggered structural phase transition-associated ferroelectricity in a hybrid perovskite-type crystal. Chinese Chemical Letters, 2024, 35(10): 109355-. doi: 10.1016/j.cclet.2023.109355

    17. [17]

      Zhuoer Cai Yinan Zhang Xiu-Ni Hua Baiwang Sun . Phase transition arising from order-disorder motion in stable layered two-dimensional perovskite. Chinese Journal of Structural Chemistry, 2024, 43(11): 100426-100426. doi: 10.1016/j.cjsc.2024.100426

    18. [18]

      Shuangying LiQingxiang ZhouZhi LiMenghua LiuYanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693

    19. [19]

      Le Ye Wei-Xiong Zhang . Structural phase transition in a new organic-inorganic hybrid post-perovskite: (N,N-dimethylpyrrolidinium)[Mn(N(CN)2)3]. Chinese Journal of Structural Chemistry, 2024, 43(6): 100257-100257. doi: 10.1016/j.cjsc.2024.100257

    20. [20]

      Run-Han LiTian-Yi DangWei GuanJiang LiuYa-Qian LanZhong-Min Su . Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35(5): 108805-. doi: 10.1016/j.cclet.2023.108805

Metrics
  • PDF Downloads(0)
  • Abstract views(687)
  • HTML views(29)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return