Citation: Xiong-Fa Yang, Jia Liu, Qiong Chen, Yan-Ping Shen, Hong-Zhi Liu, Guo-Qiao Lai. A Low Temperature Vulcanized Transparent Silane Modified Epoxy Resins for LED Filament Bulb Package[J]. Chinese Journal of Polymer Science, ;2018, 36(5): 649-654. doi: 10.1007/s10118-018-2028-8 shu

A Low Temperature Vulcanized Transparent Silane Modified Epoxy Resins for LED Filament Bulb Package

  • In this work, low-temperature vulcanized, transparent silane modified epoxy resins for LED filament bulb package were prepared. Firstly, transparent silane modified epoxy resins were produced through a controllable sol-gel method using γ-(2, 3-epoxypropoxy)propytrimethoxysilane and dimethyldiethoxylsilane. The features of the reaction were investigated and the products were characterized in detail. Subsequently, various curing agents were explored to prepare transparent silane modified epoxy resins. The silane modified epoxy resins cured by PEA-230 at a fairly low temperature (40℃/2 h then 60℃/1 h) exhibited excellent thermal stability with a thermal degradation temperature as high as 316.5℃ and adjustable hardness between 40-60 shore A. The application tests showed the materials obtained were good candidates for LED filament bulb package.
  • 加载中
    1. [1]

      Yang S. C., Kim J. S., Jin J. H., Kwak S. Y., Bae B. S.. Thermal resistance of cycloaliphatic epoxy hybrimer based on sol-gel derived oligosiloxane for LED encapsulation[J]. J. Appl. Polym. Sci., 2010,117(4):2140-2145. doi: 10.1002/app.v117:4

    2. [2]

      Yang X. F., Shao Q., Yang L. L., Zhu X. B., Hua X. L., Zheng Q. L., Song G. X., Lai G. Q.. Preparation and performance of high refractive index silicone resin-type materials for the packaging of light-emitting diodes[J]. J. Appl. Polym. Sci., 2013,127(127):1717-1724.  

    3. [3]

      Yang X. F., Yang L. L., Cao C., Zhu X. B., Hua X. L., Zheng Q. L., Song G. X., Wu L. B., Lai G. Q.. Preparation of a silicone resin-type packaging material with high refractive index for light emitting diodes[J]. Chem. J. Chin. Univ., 2012,33(5):1078-1083.  

    4. [4]

      Huang J. C., Chu Y. P., Wei M., Deanin R. D.. Comparison of epoxy resins for applications in light-emitting diodes[J]. Adv. Polym. Technol., 2004,23(4):298-306. doi: 10.1002/(ISSN)1098-2329

    5. [5]

      Bu Z. Y., Hu J. J., Li B. G.. Novel silicon-modified phenolic novolac resins:non-isothermal curing kinetics, and mechanical and thermal properties of their biofiber-reinforced composites[J]. Thermochimica Acta, 2014,575(1):244-253.  

    6. [6]

      Kumar R. N., Keem L. Y., Mang N. C., Abubakar A.. Ultraviolet radiation curable epoxy resin encapsulant for light emitting diodes[J]. J. Appl. Polym. Sci., 2006,100(2):1048-1056. doi: 10.1002/(ISSN)1097-4628

    7. [7]

      Zhang Y. H., Rhee K. Y., Park S. J.. Nanodiamond nanocluster-decorated graphene oxide/epoxy nanocomposites with enhanced mechanical behavior and thermal stability[J]. Compos. Part B:Engineer., 2017,114:111-120. doi: 10.1016/j.compositesb.2017.01.051

    8. [8]

      Yang S. C., Kwak S. Y., Jin J. H., Kim J. S., Choi Y. W., Paik K. W., Bae B. S.. Thermally resistant UV-curable epoxy-siloxane hybrid materials for light emitting diode (LED) encapsulation, J[J]. Mater. Chem., 2012,22(18):8874-8880. doi: 10.1039/c2jm16355a

    9. [9]

      Kim J. S., Yang S. C., Kwak S. Y., Choi Y. W., Paik K. W., Bae B. S.. High performance encapsulant for light-emitting diodes (LEDs) by a sol-gel derived hydrogen siloxane hybrid[J]. J. Mater. Chem., 2012,22(16):7954-7960. doi: 10.1039/c2jm16907j

    10. [10]

      Kim J. S., Yang S. C., Bae B. S.. Thermally stable transparent sol-gel based siloxane hybrid material with high refractive index for light emitting diode (LED) encapsulation[J]. Chem. Mater., 2010,22(11):3549-3555. doi: 10.1021/cm100903b

    11. [11]

      Rath S. K., Chavan J. G., Sasane S., Srivastava A., Patri M., Samui A. B., Chakraborty B. C., Sawant S. N.. Coatings of PDMS-modified epoxy via urethane linkage:Segmental correlation length, phase morphology, thermomechanical and surface behavior[J]. Prog. Org. Coat., 2009,65(3):366-374. doi: 10.1016/j.porgcoat.2009.02.007

    12. [12]

      Huang S. S., Zhou W. C., Luo F., Zhu D. M.. Mechanical and dielectric properties of short-carbon-fibers/epoxy-modified-organic-silicone-resin as heat resistant microwave absorbing coatings[J]. J. Appl. Polym. Sci., 2013,130(130):1392-1398.

    13. [13]

      Sobhani S., Jannesari A., Bastani S.. Effect of molecular weight and content of PDMS on morphology and properties of silicone-modified epoxy resin[J]. J. Appl. Polym. Sci.,, 2012,123(1):162-178. doi: 10.1002/app.34435

    14. [14]

      Ahmad S., Ashraf S. M., Sharmin E., Mohomad A., Alam M.. Synthesis, formulation, and characterization of siloxane-modified epoxy-based anticorrosive paints[J]. J. Appl. Polym. Sci., 2006,100(100):4981-4991.  

    15. [15]

      Kumar S. A., Balakrishnan T., Alagar M., Denchev Z.. Development and characterization of silicone/phosphorus modified epoxy materials and their application as anticorrosion and antifouling coatings[J]. Prog. Org. Coat., 2006,55(3):207-217. doi: 10.1016/j.porgcoat.2005.10.001

    16. [16]

      Ahmad S., Gupta A. P., Sharmin E., Alam M., Pandey S.K.. Synthesis, characterization and development of high performance siloxane-modified epoxy paints[J]. Prog. Org. Coat., 2005,54(3):248-255. doi: 10.1016/j.porgcoat.2005.06.013

    17. [17]

      Wu Q., Zhang C., Liang R., Wang B.. Combustion and thermal properties of epoxy/phenyltrisilanol polyhedral oligomeric silsesquioxane nanocomposites[J]. J. Therm. Anal. Calorim.,, 2010,100(3):1009-1015. doi: 10.1007/s10973-009-0474-9

    18. [18]

      Zhang, D. H.; Liang, E. B.; Li, T. C.; Chen, S. F.; Zhang, J. H.; Cheng, X. J.; Zhou, J. L.; Zhang, A. Q.. Environment-friendly synthesis and performance of a novel hyperbranched epoxy resin with a silicone skeleton. RSC Adv. 2013, 3(9), 3095-3102.
       

    19. [19]

      Zhang D. H., Liang E. B., Li T. C., Chen S. F., Zhang J. H., Cheng X. J., Zhou J. L., Zhang A. Q.. The effect of molecular weight of hyperbranched epoxy resins with a silicone skeleton on performance[J]. RSC Adv., 2013,3(24):9522-9529. doi: 10.1039/c3ra00023k

    20. [20]

      ASTM E313-10: Standard practice for calculating yellowness and whiteness indices from instrumentally measured color coordinates. ASTM, Book Standards 2010, 6, pp6. DOI: 10.1520/E0313-10

    21. [21]

      Zhang Y. H., Choi J. R., Park S. J.. Thermal conductivity and thermo-physical properties of nanodiamond-attached exfoliated hexagonal boron nitride/epoxy nanocomposites for microelectronics, Compos[J]. Part A:Appl. Sci. Manufactur., 2017,101:227-236. doi: 10.1016/j.compositesa.2017.06.019

    22. [22]

      Zhu J., Peng H., Rodriguez-Macias F., Margrave J. L., Khabashesku V. N., Imam A., Lozano K., Barrera E. V.. Reinforcing epoxy polymer composites through covalent integration of functionalized nanotubes[J]. Adv. Funct. Mater., 2004,14(7):643-648. doi: 10.1002/(ISSN)1616-3028

    23. [23]

      Zhang Y. H., Park S. J.. In situ modification of nanodiamonds by mercapto-terminated silane agent for enhancing the mechanical interfacial properties of nitrile butadiene rubber nanocomposites[J]. Polym. Comps., 2017. doi: 10.1002/pc.24367

  • 加载中
    1. [1]

      Zhaoru ChenXiaoxu LiuHaonan ChenJialong LiXiaofeng WangJianfeng Zhu . Application of epoxy resin in cultural relics protection. Chinese Chemical Letters, 2024, 35(4): 109194-. doi: 10.1016/j.cclet.2023.109194

    2. [2]

      Qian WuMengda XuTianjiao MaShuzhen YanJin LiXuesong Jiang . Chalcone-derived oxime esters with efficient photoinitiation properties under LED irradiation. Chinese Chemical Letters, 2025, 36(3): 110427-. doi: 10.1016/j.cclet.2024.110427

    3. [3]

      Lingfeng ZhengChengyuan LvWenlin CaiQingze PanZuokai WangWenkai LiuJiangli FanXiaojun Peng . A single-component LED excited enone photoinitiator for colorless and transparent antibacterial film preparation. Chinese Chemical Letters, 2025, 36(4): 109922-. doi: 10.1016/j.cclet.2024.109922

    4. [4]

      Shaohua ZhangLiyao LiuYingqiao MaChong-an Di . Advances in theoretical calculations of organic thermoelectric materials. Chinese Chemical Letters, 2024, 35(8): 109749-. doi: 10.1016/j.cclet.2024.109749

    5. [5]

      Junjie WangYan WangZhengdong LiChangqiang XieMusammir KhanXingzhou PengFabiao Yu . Triphenylamine-AIEgens photoactive materials for cancer theranostics. Chinese Chemical Letters, 2024, 35(6): 108934-. doi: 10.1016/j.cclet.2023.108934

    6. [6]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    7. [7]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    8. [8]

      Yuhan Wu Qing Zhao Zhijie Wang . Layered vanadium oxides: Promising cathode materials for calcium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(5): 100271-100271. doi: 10.1016/j.cjsc.2024.100271

    9. [9]

      Pingfan ZhangShihuan HongNing SongZhonghui HanFei GeGang DaiHongjun DongChunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073

    10. [10]

      Gaojie ZhuZhen YangShijun LiWeihua ZhuRui CaoJunlong ZhangJianzhang ZhaoJonathan L. SesslerXunjin ZhuJianxin SongYongshu XieJianzhuang Jiang . The 2nd Asian Conference on Porphyrins, Phthalocyanines and Related Materials. Chinese Chemical Letters, 2024, 35(7): 109535-. doi: 10.1016/j.cclet.2024.109535

    11. [11]

      Yuqing ZhuHaohao ChenLi WangLiqun YeHoule ZhouQintian PengHuaiyong ZhuYingping Huang . Piezoelectric materials for pollutants degradation: State-of-the-art accomplishments and prospects. Chinese Chemical Letters, 2024, 35(4): 108884-. doi: 10.1016/j.cclet.2023.108884

    12. [12]

      Fangling Cui Zongjie Hu Jiayu Huang Xiaoju Li Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337

    13. [13]

      Runjing XuXin GaoYa ChenXiaodong ChenLifeng Cui . Research status and prospect of rechargeable magnesium ion batteries cathode materials. Chinese Chemical Letters, 2024, 35(11): 109852-. doi: 10.1016/j.cclet.2024.109852

    14. [14]

      Genlin SunYachun LuoZhihong YanHongdeng QiuWeiyang Tang . Chiral metal-organic frameworks-based materials for chromatographic enantioseparation. Chinese Chemical Letters, 2024, 35(12): 109787-. doi: 10.1016/j.cclet.2024.109787

    15. [15]

      Xiaoxue LiHongwei ZhouRongrong QianXu ZhangLei Yu . A concise synthesis of Se/Fe materials for catalytic oxidation reactions of anthracene and polyene. Chinese Chemical Letters, 2025, 36(3): 110036-. doi: 10.1016/j.cclet.2024.110036

    16. [16]

      Yiming FangHuimin GaoKaiting ChengLiang BaiZhengtong LiYadong ZhaoXingtao Xu . An overview of photothermal materials for solar-driven interfacial evaporation. Chinese Chemical Letters, 2025, 36(3): 109925-. doi: 10.1016/j.cclet.2024.109925

    17. [17]

      Zhanheng YanWeiqing SuWeiwei XuQianhui MaoLisha XueHuanxin LiWuhua LiuXiu LiQiuhui Zhang . Carbon-based quantum dots/nanodots materials for potassium ion storage. Chinese Chemical Letters, 2025, 36(4): 110217-. doi: 10.1016/j.cclet.2024.110217

    18. [18]

      Junchen PengXue YinDandan DongZhongyuan GuoQinqin WangMinmin LiuFei HeBin DaiChaofeng Huang . Promotion effect of epoxy group neighboring single-atom Cu site on acetylene hydrochlorination. Chinese Chemical Letters, 2024, 35(6): 109508-. doi: 10.1016/j.cclet.2024.109508

    19. [19]

      Dongmei YaoJunsheng ZhengLiming JinXiaomin MengZize ZhanRunlin FanCong FengPingwen Ming . Effect of surface oxidation on the interfacial and mechanical properties in graphite/epoxy composites composite bipolar plates. Chinese Chemical Letters, 2024, 35(11): 109382-. doi: 10.1016/j.cclet.2023.109382

    20. [20]

      Yue Wang Caixia Xu Xingtao Tian Siyu Wang Yan Zhao . Challenges and Modification Strategies of High-Voltage Cathode Materials for Li-ion Batteries. Chinese Journal of Structural Chemistry, 2023, 42(10): 100167-100167. doi: 10.1016/j.cjsc.2023.100167

Metrics
  • PDF Downloads(0)
  • Abstract views(803)
  • HTML views(57)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return