Citation: Jing Liu, Hai-Juan Kong, Yu Ma, Shu Zhu, Mu-Huo Yu. Kinetics Analysis on the Polycondensation Process of Poly(p-phenylene terephthalamide): Experimental Verification and Molecular Simulation[J]. Chinese Journal of Polymer Science, ;2018, 36(5): 675-682. doi: 10.1007/s10118-018-2024-z shu

Kinetics Analysis on the Polycondensation Process of Poly(p-phenylene terephthalamide): Experimental Verification and Molecular Simulation

  • Corresponding author: Yu Ma, yma@dhu.edu.cn Mu-Huo Yu, yumuhuo@dhu.edu.cn
  • Received Date: 7 August 2017
    Accepted Date: 21 August 2017
    Available Online: 11 January 2018

  • The conventional low-temperature method of solution polycondensation was developed to realize the reaction of p-phenylenediamin and terephthaloyl chloride for the preparation of poly(p-phenylene terephthalamide) (PPTA). Some main factors influencing this process were investigated to determine the optimum condition for high molecular weight. Experiment showed significant slowing of the reaction and gradual deviation of second-order reaction kinetics due to diffusion control. These phenomena were studied theoretically via dynamic Monte Carlo simulation. A concise expression, \begin{document}$ {\bar X_{\rm{n}}} \sim c_0^{ - 0.88} \cdot {t^{0.37}} $\end{document}, was proposed to describe the diffusion-controlled polycondensation process as a function of the monomer concentration and reaction time. The theoretical results provided a good description of diffusion-effected kinetics for the polycondensation process of PPTA, and demonstrated good agreement with the experimental data. Some differences of scaling relations between model and experiment results were also discussed.
  • 加载中
    1. [1]

      Rao Y., Waddon A., Farris R.. Structure-property relation in poly(p-phenylene terephthalamide) (PPTA) fibers[J]. Polymer, 2001,42(13):5937-5946. doi: 10.1016/S0032-3861(00)00905-8

    2. [2]

      Mark H., Atlas S., Ogata N.. Aromatic polyamide[J]. J. Polym. Sci., 1962,61(172):49-53. doi: 10.1002/pol.1962.1206117225

    3. [3]

      Anagnostopoulos G., Parthenios J., Galiotis C.. Thermal stress development in fibrous composites[J]. Mater. Lett., 2008,62(3):341-345. doi: 10.1016/j.matlet.2007.05.031

    4. [4]

      Knijnenberg A., Bos J., Dingemans T. J.. The synthesis and characterisation of reactive poly(p-phenylene terephthalamide)s:a route towards compression stable aramid fibres[J]. Polymer, 2010,51(9):1887-1897. doi: 10.1016/j.polymer.2010.03.015

    5. [5]

      Rao Y., Waddon A., Farris R.. The evolution of structure and properties in poly(p-phenylene terephthalamide) fibers[J]. Polymer, 2001,42(13):5925-5935. doi: 10.1016/S0032-3861(00)00906-X

    6. [6]

      Du S., Wang W., Yan Y., Zhang J., Tian M., Zhang L., Wan X.. A facile synthetic route to poly(p-phenylene terephthalamide) with dual functional groups[J]. Chem. Commun., 2014,50(69):9929-9931. doi: 10.1039/C4CC02366H

    7. [7]

      Du S., Zhang J., Guan Y., Wan X.. Sequence effects on properties of the poly(p-phenylene terephthalamide)-based macroinitiators and their comb-like copolymers grafted by polystyrene side chains[J]. Aust. J. Chem., 2014,67(1):39-48. doi: 10.1071/CH13291

    8. [8]

      Schwartz P.. A review of recent experimental results concerning the strength and time dependent behavior of fibrous poly(paraphenylene terephthalamide)[J]. Polym. Eng. Sci., 1987,27(11):842-847. doi: 10.1002/(ISSN)1548-2634

    9. [9]

      Perepelkin K. E., Machalaba N. N.. Recent achievements in structure ordering and control of properties of para-aramide fibres[J]. Mol. Cryst. Liq. Cryst., 2000,353(1):275-286. doi: 10.1080/10587250008025667

    10. [10]

      Sun L., Xu J., Luo W., Guo C., Tuo X., Wang X.. Investigation on the preparation of high molecular weight poly(p-phenylene terephthalamide) using CaH2 as acid absorbent[J]. Acta Polymerica Sinica (in Chinese), 2012(1):70-74.  

    11. [11]

      Wang S., Liu H., Xiao R.. Determination of condensation-polymerization thermal effect of poly(paraphenylenetere-phalamide)[J]. Journal of DongHua University (in Chinese)., 1984,1:41-46.  

    12. [12]

      Chae H. G., Kumar S.. Rigid-rod polymeric fibers[J]. J. Appl. Polym. Sci., 2006,100(1):791-802. doi: 10.1002/(ISSN)1097-4628

    13. [13]

      Flory, P. J., Principles of polymer chemistry, Cornell University Press, New York, 1953, p. 317.

    14. [14]

      Cotts D. B., Berry G. C.. Polymerization kinetics of rigid rodlike molecules:polycondensation of poly([benzo (1, 2-d:5, 4-d') bisoxazole-2, 6-diyl]-1, 4-phenylene)[J]. Macromolecyles, 1981,14(4):930-934. doi: 10.1021/ma50005a008

    15. [15]

      Agarwal U., Khakhar D.. Enhancement of polymerization rates for rigid rod-like molecules by shearing[J]. Nature, 1992,360:53-55. doi: 10.1038/360053a0

    16. [16]

      Agarwal U., Khakhar D.. Diffusion-limited polymerization of rigid rodlike molecules:dilute solutions[J]. J. Chem. Phys., 1992,96(9):7125-7134. doi: 10.1063/1.462546

    17. [17]

      Agarwal U., Khakhar D.. Shear flow induced orientation development during homogeneous solution polymerization of rigid rodlike molecules[J]. Macromolecules, 1993,26(15):3960-3965. doi: 10.1021/ma00067a035

    18. [18]

      Agarwal U., Khakhar D.. Simulation of diffusion-limited step-growth polymerization in 2D:effect of shear flow and chain rigidity[J]. J. Chem. Phys., 1993,99(4):3067-3074. doi: 10.1063/1.466195

    19. [19]

      Agarwal U., Khakhar D.. Diffusion-limited polymerization of rigid rodlike molecules:semidilute solutions[J]. J. Chem. Phys., 1993,99(2):1382-1392. doi: 10.1063/1.465382

    20. [20]

      Arpin M., Strazielle C.. Characterization and conformation of aromatic polyamides:poly(1, 4-phenylene terephthalamide) and poly(p-benzamide) in sulphuric acid[J]. Polymer, 1977,18(6):591-598. doi: 10.1016/0032-3861(77)90061-1

    21. [21]

      Bair T., Morgan P., Killian F.. Poly(1, 4-phenylenetere-phthalamides). polymerization and novel liquid-crystalline solutions[J]. Macromolecules, 1977,10(6):1396-1400. doi: 10.1021/ma60060a042

    22. [22]

      Gupta J. S., Agge A., Khakhar D.. Polymerization kinetics of rodlike molecules under quiescent conditions[J]. AlChE J., 2001,47(1):177-186. doi: 10.1002/(ISSN)1547-5905

    23. [23]

      Bao J. S., You A. J., Zhang S. Q., Zhang S. A., Hu C.. Studies on the semirigid chain polyamide-poly(1, 4-phenylenetere-phthalamide)[J]. J. Appl. Polym. Sci., 1981,26(4):1211-1220. doi: 10.1002/app.1981.070260413

    24. [24]

      Doi, M. ; Edwards, S. F., The theory of polymer dynamics, Oxford University Press, New York, 1988, p. 295.

    25. [25]

      Tracy M., Pecora R.. Dynamics of rigid and semirigid rodlike polymers[J]. Annu. Rev. Phys. Chem., 1992,43(1):525-557. doi: 10.1146/annurev.pc.43.100192.002521

    26. [26]

      Doi M.. Molecular dynamics and rheological properties of concentrated solutions of rodlike polymers in isotropic and liquid crystalline phases[J]. J. Polym. Sci., Part B, 1981,19:229-243.  

    27. [27]

      Teraoka I., Hayakawa R.. Theory of dynamics of entangled rod-like polymers by use of a mean-field green function formulation.Ⅰ. transverse diffusion[J]. J. Chem. Phys., 1988,89(11):6989-6995. doi: 10.1063/1.455325

    28. [28]

      Teraoka I., Hayakawa R.. Theory of dynamics of entangled rod-like polymers by use of a mean-field green function formulation.Ⅱ. rotational diffusion[J]. J. Chem. Phys., 1989,91(4):2643-2648. doi: 10.1063/1.456973

    29. [29]

      Agge A., Jain S., Khakhar D.. Acceleration of the polymerization of rodlike molecules by flow[J]. J. Am. Chem. Soc., 2000,122(44):10910-10913. doi: 10.1021/ja001541r

    30. [30]

      Jain S., Agge A., Khakhar D.. Flow enhanced diffusion-limited polymerization of rodlike molecules[J]. J. Chem. Phys., 2001,114(1):553-560. doi: 10.1063/1.1330211

    31. [31]

      Zhang R., Kong H. J., Zhong H. P., Liu J., Zhou J. J., Teng C. Q., Ma Y., Yu M. H.. N-Alkyl PPTA:preparation and characterization[J]. Adv. Mater. Res., 2012,554:105-109.  

    32. [32]

      Fitzer E., Müller D.. The influence of oxygen on the chemical reactions during stabilization of pan as carbon fiber precursor[J]. Carbon, 1975,13(1):63-69. doi: 10.1016/0008-6223(75)90259-6

    33. [33]

      Liu J., Ma Y., Wu R., Yu M.. Molecular simulation of diffusion-controlled kinetics in stepwise polymerization[J]. Polymer, 2016,97:335-345. doi: 10.1016/j.polymer.2016.05.050

    34. [34]

      Atkins, P. ; Paula, D. J. Physical Chemistry, W. H. Freeman & Company, New York, 2006, p. 807.

    35. [35]

      Wang S., Liu H., Xiao R.. Determination of condensation-polymerization thermal effect of poly(paraphenylenetere-phalamide)[J]. Journal of DongHua. University, 1984,1:41-46.  

    36. [36]

      Northolt M.. X-ray diffraction study of poly(p-phenylene terephthalamide) fibres[J]. Eur. Polym. J., 1974,10(9):799-804. doi: 10.1016/0014-3057(74)90131-1

    37. [37]

      Northolt M., van Aartsen J.. On the crystal and molecular structure of poly-(p-phenylene terephthalamide)[J]. J. Polym. Sci., Part C:Polym. Lett., 1973,11(5):333-337. doi: 10.1002/pol.1973.130110508

    38. [38]

      Bu Z., Russo P. S., Tipton D. L., Negulescu I. I.. Self-diffusion of rodlike polymers in isotropic solutions[J]. Macromolecules, 1994,27(23):6871-6882. doi: 10.1021/ma00101a027

    39. [39]

      Wang P., Wang K., Zhang J.. Non-aqueous suspension polycondensation in NMP-CaCl2/paraffin system-A new approach for the preparation of poly(p-phenylene terephthalamide)[J]. Chinese J. Polym. Sci., 2015,33(4):564-575. doi: 10.1007/s10118-015-1607-1

  • 加载中
    1. [1]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    2. [2]

      Huimin Gao Zhuochen Yu Xuze Zhang Xiangkun Yu Jiyuan Xing Youliang Zhu Hu-Jun Qian Zhong-Yuan Lu . A mini review of the recent progress in coarse-grained simulation of polymer systems. Chinese Journal of Structural Chemistry, 2024, 43(5): 100266-100266. doi: 10.1016/j.cjsc.2024.100266

    3. [3]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

    4. [4]

      Yue RenKang LiYi-Zi WangShao-Peng ZhaoShu-Min PanHaojie FuMengfan JingYaming WangFengyuan YangChuntai Liu . Swelling and erosion assisted sustained release of tea polyphenol from antibacterial ultrahigh molecular weight polyethylene for joint replacement. Chinese Chemical Letters, 2025, 36(2): 110468-. doi: 10.1016/j.cclet.2024.110468

    5. [5]

      Hualei XuManman HanHaiqiang LiuLiang QinLulu ChenHao HuRan WuChenyu YangHua GuoJinrong LiJinxiang FuQichen HaoYijun ZhouJinchao FengXiaodong Wang . 4-Nitrocatechol as a novel matrix for low-molecular-weight compounds in situ detection and imaging in biological tissues by MALDI-MSI. Chinese Chemical Letters, 2024, 35(6): 109095-. doi: 10.1016/j.cclet.2023.109095

    6. [6]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    7. [7]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    8. [8]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    9. [9]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

    10. [10]

      Yanwei DuanQing Yang . Molecular targets and their application examples for interrupting chitin biosynthesis. Chinese Chemical Letters, 2025, 36(4): 109905-. doi: 10.1016/j.cclet.2024.109905

    11. [11]

      Zhenchun YangBixiao GuoZhenyu HuKun WangJiahao CuiLina LiChun HuYubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251

    12. [12]

      Zhimin SunXin-Hui GuoYue ZhaoQing-Yu MengLi-Juan XingHe-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162

    13. [13]

      Li LinSong-Lin TianZhen-Yu HuYu ZhangLi-Min ChangJia-Jun WangWan-Qiang LiuQing-Shuang WangFang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802

    14. [14]

      Minghao HuTianci XieYuqiang HuLongjie LiTing WangTongbo Wu . Allosteric DNAzyme-based encoder for molecular information transfer. Chinese Chemical Letters, 2024, 35(7): 109232-. doi: 10.1016/j.cclet.2023.109232

    15. [15]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    16. [16]

      Wei-Jia WangKaihong Chen . Molecular-based porous polymers with precise sites for photoreduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(1): 109998-. doi: 10.1016/j.cclet.2024.109998

    17. [17]

      Dongpu WuZheng YangYuchen XiaLulu WuYingxia ZhouCaoyuan NiuPuhui XieXin ZhengZhanqi Cao . Surface controllable wettability using amphiphilic rotaxane molecular shuttles. Chinese Chemical Letters, 2025, 36(2): 110353-. doi: 10.1016/j.cclet.2024.110353

    18. [18]

      Bingwei WangYihong DingXiao Tian . Benchmarking model chemistry composite calculations for vertical ionization potential of molecular systems. Chinese Chemical Letters, 2025, 36(2): 109721-. doi: 10.1016/j.cclet.2024.109721

    19. [19]

      Kai YeZhicheng YeChuantao WangZhilai LuoCheng LianChunyan Bao . Artificial signal transduction triggered by molecular photoisomerization in lipid membranes. Chinese Chemical Letters, 2025, 36(4): 110033-. doi: 10.1016/j.cclet.2024.110033

    20. [20]

      Man Wu Chuandong Jia . A light-powered molecular pump achieving transmembrane concentration gradient. Chinese Journal of Structural Chemistry, 2025, 44(4): 100452-100452. doi: 10.1016/j.cjsc.2024.100452

Metrics
  • PDF Downloads(0)
  • Abstract views(1130)
  • HTML views(51)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return