Citation: Gui-Qiu Ma, Guan-Kai Sun, Zhe Ma, Jing-Qing Li, Jing Sheng. In-line Plasma-induced Graft-copolymerization of Pentaerythritol Triacrylate onto Polypropylene[J]. Chinese Journal of Polymer Science, ;2018, 36(8): 979-983. doi: 10.1007/s10118-018-2023-0 shu

In-line Plasma-induced Graft-copolymerization of Pentaerythritol Triacrylate onto Polypropylene

  • Corresponding author: Gui-Qiu Ma, magq@tju.edu.cn
  • Received Date: 9 November 2017
    Accepted Date: 9 December 2017
    Available Online: 6 March 2018

  • Pentaerythritol triacrylate (PETA) was successfully grafted onto the plasma-treated isotactic polypropylene (iPP) via the in situ melt processing. The X-ray photoelectron spectroscopy (XPS) results showed that the hydroxyl and carbonyl groups, and peroxides could be generated via plasma treatment. The content of free radical in plasma-treated iPP (PiPP) was measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH). It was found that the resulting peroxides induced the grafting copolymerization of PETA onto iPP, and the grafted PETA promoted the formation of β-crystal in PiPP, which was evidenced by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD) measurements, respectively.
  • 加载中
    1. [1]

      Bhattacharya, A.; Misra, B. N. Grafting: a versatile means to modify polymers: techniques, factors and applications. Prog. Polym. Sci. 2004, 29(8), 767−814  doi: 10.1016/j.progpolymsci.2004.05.002

    2. [2]

      Xu, G. H. , Jiang, E. Y., and Sheng, J. , " Plasma technologies and application” (in Chinese), Chemical Engineering Publication, Beijing, 2006, p. 218

    3. [3]

      Weng, W.; Hu, W.; Dekmezian, A. H.; Ruff, C. J. Long chain branched isotactic polypropylene. Macromolecules 2002, 35(10), 3838−3843  doi: 10.1021/ma020050j

    4. [4]

      Liu, Z. M.; Xu, Z. K.; Wang, J. Q.; Wu, J.; Fu, J. J. Surface modification of polypropylene microfiltration membranes by graft polymerization of N-vinyl-2-pyrrolidone. Eur. Polym. J. 2004, 40(9), 2077−2087  doi: 10.1016/j.eurpolymj.2004.05.020

    5. [5]

      Kaur, S.; Ma, Z. W.; Gopal, R.; Singh, G.; Matsuura, T. Plasma-induced graft copolymerization of poly(methacrylic acid) on electrospun poly(vinylidene fluoride) nanofiber membrane. Langmuir 2007, 23(26), 13085−13092  doi: 10.1021/la701329r

    6. [6]

      Borsig, E.; Duin, M. V.; Gotsis, A. D.; Picchioni, F. Long chain branching on linear polypropylene by solid state reactions. Eur. Polym. J. 2008, 44(1), 200−212  doi: 10.1016/j.eurpolymj.2007.10.008

    7. [7]

      Samanta, K. K.; Jassal, M.; Agrawal, A. K. Improvement in water and oil absorbency of textile substrate by atmospheric pressure cold plasma treatment. Surf. Coat. Technol. 2009, 203(10-11), 1336−1342  doi: 10.1016/j.surfcoat.2008.10.044

    8. [8]

      Li, S.; Xiao, M.; Wei, D.; Xiao, H. N.; Hu, F.; Zheng, A. The melt grafting preparation and rheological characterization of long chain branching polypropylene. Polymer 2009, 50(25), 6121−6128  doi: 10.1016/j.polymer.2009.10.006

    9. [9]

      Li, S.; Xiao, M.; Guan, Y.; Wei, D.; Xiao, H. N.; Zheng, A. A novel strategy for the preparation of long chain branching polypropylene and the investigation on foamability and rheology. Eur. Polym. J. 2012, 48(2), 362−371  doi: 10.1016/j.eurpolymj.2011.11.015

    10. [10]

      Wang, X. C.; Tzoganakis, C.; Rempel, G. L. Chemical modification of polypropylene with peroxide/pentaerythritol triacrylate by reactive extrusion. J. Appl. Polym. Sci. 1996, 61(8), 1395−1404  doi: 10.1002/(ISSN)1097-4628

    11. [11]

      Tian, J. H.; Yu, W.; Zhou, C. X. The preparation and rheology characterization of long chain branching polypropylene. Polymer 2006, 47(23), 7962−7969  doi: 10.1016/j.polymer.2006.09.042

    12. [12]

      Wang, K.; Wang, S. C.; Wu, F.; Pang, Y. Y.; Liu, W.; Zhai, W. T.; Zheng, W. G. A new strategy for preparation of long-chain branched polypropylene via reactive extrusion with supercritical CO2 designed for an improved foaming approach. J. Mater. Sci. 2016, 51(5), 2705−2715  doi: 10.1007/s10853-015-9584-x

    13. [13]

      Ma, G. Q.; Liu, X. N.; Huang, D. H.; Yuan, X. B.; Sheng, J. Surface modification of polypropylene and compatibilization of interfaces in incompatible blends of polypropylene with polystyrene by plasma of CO2. Appl. Surf. Sci. 2009, 255(17), 7483−7494  doi: 10.1016/j.apsusc.2009.03.066

    14. [14]

      Saxena, S.; Ray, A. R.; Gupta, B. Graft polymerization of acrylic acid onto polypropylene monofilament by RF plasma. J. Appl. Polym. Sci. 2010, 116, 2884−2892

    15. [15]

      Ma, G. Q.; Liu, B.; Li, C.; Huang, D. H.; Sheng, J. Plasma modification of polypropylene surfaces and its alloying with styrene in situ. Appl. Surf. Sci. 2012, 258(7), 2424−2432  doi: 10.1016/j.apsusc.2011.10.065

    16. [16]

      Ma, G. Q.; Zhai, J. J.; Liu, B.; Huang, D. H.; Sheng, J. Plasma modification of polypropylene surfaces and grafting copolymerization of styrene onto polypropylene. Chinese J. Polym. Sci. 2012, 30(3), 423−435  doi: 10.1007/s10118-012-1130-6

    17. [17]

      Mazloumpour, M.; Malshe, P.; El-Shafei, A.; Hauser, P. Conferring durable antimicrobial properties on nonwoven polypropylene via plasma-assisted graft polymerization of DADMAC. Surf. Coat. Technol. 2013, 224(224), 1−7

    18. [18]

      Abednejad, A. S.; Amoabediny, G.; Ghaee, A. Surface modification of polypropylene membrane by polyethylene glycol graft polymerization. Mater. Sci. Eng. C 2014, 42, 443−450  doi: 10.1016/j.msec.2014.05.060

    19. [19]

      Ma, G. Q.; Liu, Y. P.; Wei, S. X.; Sheng, J. Surface modification of polypropylene by ethylene plasma and its induced β-form in polypropylene. Chinese J. Polym. Sci. 2015, 33(5), 669−673  doi: 10.1007/s10118-015-1631-1

    20. [20]

      Pandiyaraj, K. N.; Kumar, M. C. R.; Kumar, A. A.; Padmanabhan, P. V. A.; Deshmukh, R. R.; Bah, M.; Shah, S. I.; Su, P. G.; Jr, M. H.; Halim, A. S. Tailoring the surface properties of polypropylene films through cold atmospheric pressure plasma (CAPP) assisted polymerization and immobilization of biomolecules for enhancement of anti-coagulation activity. Appl. Surf. Sci. 2016, 370, 545−556  doi: 10.1016/j.apsusc.2016.02.137

    21. [21]

      Fargere, T.; Abdennadher, M.; Delmas, M.; Boutevin, B. Determination of peroxides and hydroperoxides with 2,2-diphenyl-1-picrylhydrazyl (DPPH). Application to ozonized ethylene vinyl acetate copolymers (EVA). Eur. Polym. J. 1995, 31(5), 489−497

    22. [22]

      Wang, C.; Chen, J. R. Study on peroxide of poly(tetrafluoroethylene) surface modified with argon remote-plasma. Chemical Industry and Engineering Progress (in Chinese) 2008, 27(9), 1465−1468

  • 加载中
    1. [1]

      Wenbi WuYinchu DongHaofan LiuXuebing JiangLi LiYi ZhangMaling Gou . Modification of plasma protein for bioprinting via photopolymerization. Chinese Chemical Letters, 2024, 35(8): 109260-. doi: 10.1016/j.cclet.2023.109260

    2. [2]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    3. [3]

      Zhigang ZengChangzhou LiaoLei Yu . Molecules for COVID-19 treatment. Chinese Chemical Letters, 2024, 35(7): 109349-. doi: 10.1016/j.cclet.2023.109349

    4. [4]

      Jiqing LiuQi DangLiting WangDejin WangLiang Tang . Applications of flexible electrochemical electrodes in wastewater treatment: A review. Chinese Chemical Letters, 2024, 35(8): 109277-. doi: 10.1016/j.cclet.2023.109277

    5. [5]

      Tong ZhangChao SunShubin YangZimin CaiSifeng ZhuWendian LiuYun LuanCheng Wang . Inhalation of taraxasterol loaded mixed micelles for the treatment of idiopathic pulmonary fibrosis. Chinese Chemical Letters, 2024, 35(8): 109248-. doi: 10.1016/j.cclet.2023.109248

    6. [6]

      Wenhao ChenJian DuHanbin ZhangHancheng WangKaicheng XuZhujun GaoJiaming TongJin WangJunjun XueTing ZhiLonglu Wang . Surface treatment of GaN nanowires for enhanced photoelectrochemical water-splitting. Chinese Chemical Letters, 2024, 35(9): 109168-. doi: 10.1016/j.cclet.2023.109168

    7. [7]

      Wenlong LiFeishi ShanQingdong BaoQinghua LiHua GaoLeyong Wang . Supramolecular assembly nanoparticle for trans-epithelial treatment of keratoconus. Chinese Chemical Letters, 2024, 35(10): 110060-. doi: 10.1016/j.cclet.2024.110060

    8. [8]

      Haijing CuiWeihao ZhuChuning YueMing YangWenzhi RenAiguo Wu . Recent progress of ultrasound-responsive titanium dioxide sonosensitizers in cancer treatment. Chinese Chemical Letters, 2024, 35(10): 109727-. doi: 10.1016/j.cclet.2024.109727

    9. [9]

      Feifei WangHang YaoXinyue WuYijian TangYang BaiHui ChongHuan Pang . Metal–organic framework and its composites modulate macrophage polarization in the treatment of inflammatory diseases. Chinese Chemical Letters, 2024, 35(5): 108821-. doi: 10.1016/j.cclet.2023.108821

    10. [10]

      Yiran TaoChunlei DaiZhaoxiang XieXinru YouKaiwen LiJun WuHai Huang . Redox responsive polymeric nanoparticles enhance the efficacy of cyclin dependent kinase 7 inhibitor for enhanced treatment of prostate cancer. Chinese Chemical Letters, 2024, 35(8): 109170-. doi: 10.1016/j.cclet.2023.109170

    11. [11]

      Peide ZhuYangjia LiuYaoyao TangSiqi ZhuXinyang LiuLei YinQuan LiuZhiqiang YuQuan XuDixian LuoJuncheng Wang . Bi-doped carbon quantum dots functionalized liposomes with fluorescence visualization imaging for tumor diagnosis and treatment. Chinese Chemical Letters, 2024, 35(4): 108689-. doi: 10.1016/j.cclet.2023.108689

    12. [12]

      Dexuan XiaoTianyu ChenTianxu ZhangSirong ShiMei ZhangXin QinYunkun LiuLongjiang LiYunfeng Lin . Transdermal treatment for malignant melanoma by aptamer-modified tetrahedral framework nucleic acid delivery of vemurafenib. Chinese Chemical Letters, 2024, 35(4): 108602-. doi: 10.1016/j.cclet.2023.108602

    13. [13]

      Yulong LiuHaoran LuTong YangPeng ChengXu HanWenyan Liang . Catalytic applications of amorphous alloys in wastewater treatment: A review on mechanisms, recent trends, challenges and future directions. Chinese Chemical Letters, 2024, 35(10): 109492-. doi: 10.1016/j.cclet.2024.109492

    14. [14]

      Zhe-Han YangJie YinLei XinYuanfang LiYijie HuangRuo YuanYing Zhuo . Research advancement of DNA-based intelligent hydrogels: Manufacture, characteristics, application of disease diagnosis and treatment. Chinese Chemical Letters, 2024, 35(10): 109558-. doi: 10.1016/j.cclet.2024.109558

    15. [15]

      Jisheng LiuJunli ChenXifeng ZhangYin WuXin QiJie WangXiang Gao . Red blood cell membrane-coated FLT3 inhibitor nanoparticles to enhance FLT3-ITD acute myeloid leukemia treatment. Chinese Chemical Letters, 2024, 35(9): 109779-. doi: 10.1016/j.cclet.2024.109779

Metrics
  • PDF Downloads(0)
  • Abstract views(646)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return