Effect of Chain Extender on Hydrogen Bond and Microphase Structure of Biodegradable Thermoplastic Polyurethanes
- Corresponding author: Jie-Hua Li, jiehua_li@scu.edu.cn Hong Tan, hongtan@scu.edu.cn
Citation: Wen-Kai Liu, Yun Zhao, Rong Wang, Feng Luo, Jian-Shu Li, Jie-Hua Li, Hong Tan. Effect of Chain Extender on Hydrogen Bond and Microphase Structure of Biodegradable Thermoplastic Polyurethanes[J]. Chinese Journal of Polymer Science, ;2018, 36(4): 514-520. doi: 10.1007/s10118-018-2020-3
Cherng J. Y., Hou T. Y., Shih M. F., Talsma H., Hennink W. E.. Polyurethane-based drug delivery systems[J]. Int. J. Pharm., 2013,450(1):145-162.
Zdrahala R. J., Zdrahala I. J.. Biomedical applications of polyurethanes:a review of past promises, present realities, and a vibrant future[J]. J. Biomater. Appl., 1999,14(1):67-90. doi: 10.1177/088532829901400104
Guelcher S. A.. Biodegradable polyurethanes:synthesis and applications in regenerative medicine[J]. Tissue Eng., Part B:Reviews, 2008,14(1):3-17. doi: 10.1089/teb.2007.0133
Guan J., Fujimoto K. L., Sacks M. S., Wagner W. R.. Preparation and characterization of highly porous, biodegradable polyurethane scaffolds for soft tissue applications[J]. Biomaterials, 2005,26(18):3961-3971. doi: 10.1016/j.biomaterials.2004.10.018
Song N. J., Jiang X., Li J. H., Pang Y., Li J. S., Tan H., Fu Q.. The degradation and biocompatibility of waterborne biodegradable polyurethanes for tissue engineering[J]. Chinese J. Polym. Sci., 2013,31(10):1451-1462. doi: 10.1007/s10118-013-1315-7
Ding M. M., Song N. J., He X. L., Li J. H., Zhou L. J., Tan H., Fu Q., Gu Q.. Toward the next-generation nanomedicines:design of multifunctional multiblock polyurethanes for effective cancer treatment[J]. ACS Nano, 2013,7(3):1918-1928. doi: 10.1021/nn4002769
Eceiza A., Martin M., de la Caba K., Kortaberria G., Gabilondo N., Corcuera M., Mondragon I.. Thermoplastic polyurethane elastomers based on polycarbonate diols with different soft segment molecular weight and chemical structure:mechanical and thermal properties[J]. Polym. Eng. Sci., 2008,48(2):297-306. doi: 10.1002/(ISSN)1548-2634
Spontak R. J., Patel N. P.. Thermoplastic elastomers:fundamentals and applications[J]. Curr. Opin. Colloid Interface Sci., 2000,5(5):333-340.
Wang W. S., Ping P., Yu H. J., Chen X. S., Jing X. B.. Synthesis and characterization of a novel biodegradable, thermoplastic polyurethane elastomer[J]. J. Polym. Sci., Part A:Polym. Chem., 2010,44(19):5505-5512.
Huang W., Yang B., Zhao Y., Di ng, Z; Huang W. M., Yang B., Zhao Y.. Thermo-moisture responsive polyurethane shape-memory polymer and composites:a review.[J]. J. Mater. Chem., 2010,20(17):3367-3381. doi: 10.1039/b922943d
Lai S. M., Lan Y. C.. Shape memory properties of melt-blended polylactic acid (PLA)/thermoplastic polyurethane (TPU) bio-based blends[J]. J. Polym. Res., 2013,20(5):140-147. doi: 10.1007/s10965-013-0140-6
Cui B., Wu Q. Y., Shen L., Yu H. B.. High performance bio-based polyurethane elastomers:effect of different soft and hard segments[J]. Chinese J. Polym. Sci., 2016,34(7):901-909. doi: 10.1007/s10118-016-1811-7
Guelcher S. A., Srinivasan A., Dumas J. E., Didier J. E., McBride S., Hollinger , J. O.. Synthesis, mechanical properties, biocompatibility, and biodegradation of polyurethane networks from lysine polyisocyanates.[J]. Biomaterials, 2008,29(12):1762-1775. doi: 10.1016/j.biomaterials.2007.12.046
Lee B. S., Chun B. C., Chung Y. C., Sul K. I., Cho J. W.. Structure and thermomechanical properties of polyurethane block copolymers with shape memory effect[J]. Macromolecules, 2001,34(18):6431-6437. doi: 10.1021/ma001842l
Yang B., Huang W. M., Li C., Li L.. Effects of moisture on the thermomechanical properties of a polyurethane shape memory polymer[J]. Polymer, 2006,47(4):1348-1356. doi: 10.1016/j.polymer.2005.12.051
Huang W. M., Yang B., An L., Li C., Chan Y.. Water-driven programmable polyurethane shape memory polymer:demonstration and mechanism[J]. Appl. Phys. Lett., 2005,86(11)114105. doi: 10.1063/1.1880448
Altıntaş Z., Çakmakçı , E.; Kahraman M. V., Kayaman-Apohan N.. Thioether functional chain extender for thermoplastic polyurethanes[J]. Chinese J. Polym. Sci., 2015,33(6):850-856. doi: 10.1007/s10118-015-1636-9
Ping P., Wang W. S., Chen X. S., Jing X. B.. Poly(ε-caprolactone) polyurethane and its shape-memory property[J]. Biomacromolecules, 2005,6(2):587-592. doi: 10.1021/bm049477j
Zhou L. J., Yu L. Q., Ding M. M., Li J. S., Tan H., Wang Z. G., Fu Q.. Synthesis and characterization of pH-sensitive biodegradable polyurethane for potential drug delivery applications[J]. Macromolecules, 2011,44(4):857-864. doi: 10.1021/ma102346a
Rabani G., Luftmann H., Kraft A.. Synthesis and characterization of two shape-memory polymers containing short aramid hard segments and poly(ε-caprolactone) soft segments[J]. Polymer, 2006,47(12):4251-4260. doi: 10.1016/j.polymer.2006.03.106
Li F., Zhang X., Hou J., Xu M., Luo X., Ma D., Kim B. K.. Studies on thermally stimulated shape memory effect of segmented polyurethanes[J]. J. Appl. Polym. Sci., 1997,64(8):1511-1516. doi: 10.1002/(ISSN)1097-4628
Kim B. K., Lee S. Y., Xu M.. Polyurethanes having shape memory effects[J]. Polymer, 1996,37(26):5781-5793. doi: 10.1016/S0032-3861(96)00442-9
Bogdanov B., Toncheva V., Schacht E., Finelli L., Sarti B., Scandola M.. Physical properties of poly(ester-urethanes) prepared from different molar mass polycaprolactone-diols[J]. Polymer, 1999,40(11):3171-3182. doi: 10.1016/S0032-3861(98)00552-7
Chen C. P., Dai S. A., Chang H. L., Su W. C., Wu T. M., Jeng R. J.. Polyurethane elastomers through multi-hydrogen-bonded association of dendritic structures[J]. Polymer, 2005,46(25):11849-11857. doi: 10.1016/j.polymer.2005.06.127
Jiang X., Li J. H., Ding M. M., Tan H., Ling Q. Y., Zhong Y. P., Fu Q.. Synthesis and degradation of nontoxic biodegradable waterborne polyurethanes elastomer with poly(ε-caprolactone) and poly(ethylene glycol) as soft segment[J]. Eur. Polym. J., 2007,43(5):1838-1846. doi: 10.1016/j.eurpolymj.2007.02.029
Seymour R., Estes G., Cooper S.. Infrared studies of segmented polyurethan elastomers[J]. I. Hydrogen bonding. Macromolecules, 1970,3(5):579-583.
Su T., Wang G. Y., Xu D. X., Hu C. P.. Preparation and properties of waterborne poly-urethaneurea consisting of fluorinated siloxane units[J]. J. Polym. Sci., Part A:Polym. Chem., 2006,44(10):3365-3373. doi: 10.1002/(ISSN)1099-0518
Fangzhou Wang , Wentong Gao , Chenghui Li . A weak but inert hindered urethane bond for high-performance dynamic polyurethane polymers. Chinese Chemical Letters, 2024, 35(5): 109305-. doi: 10.1016/j.cclet.2023.109305
Yang Qin , Jiangtian Li , Xuehao Zhang , Kaixuan Wan , Heao Zhang , Feiyang Huang , Limei Wang , Hongxun Wang , Longjie Li , Xianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826
Yifei Zhang , Yuncong Xue , Laiwei Gao , Rui Liao , Feng Wang , Fei Wang . Merging non-covalent and covalent crosslinking: En route to single chain nanoparticles. Chinese Chemical Letters, 2024, 35(6): 109217-. doi: 10.1016/j.cclet.2023.109217
Haoran Shi , Jiaxin Wang , Yuqin Zhu , Hongyang Li , Guodong Ju , Lanlan Zhang , Chao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333
Qiongqiong Wan , Yanan Xiao , Guifang Feng , Xin Dong , Wenjing Nie , Ming Gao , Qingtao Meng , Suming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775
Yi Luo , Lin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648
Ziyang Yin , Lingbin Xie , Weinan Yin , Ting Zhi , Kang Chen , Junan Pan , Yingbo Zhang , Jingwen Li , Longlu Wang . Advanced development of grain boundaries in TMDs from fundamentals to hydrogen evolution application. Chinese Chemical Letters, 2024, 35(5): 108628-. doi: 10.1016/j.cclet.2023.108628
Tianhao Li , Wenguang Tu , Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195
Zhipeng Wan , Hao Xu , Peng Wu . Selective oxidation using in-situ generated hydrogen peroxide over titanosilicates. Chinese Journal of Structural Chemistry, 2024, 43(6): 100298-100298. doi: 10.1016/j.cjsc.2024.100298
Xiangyuan Zhao , Jinjin Wang , Jinzhao Kang , Xiaomei Wang , Hong Yu , Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159
Chunru Liu , Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136
Haibin Yang , Duowen Ma , Yang Li , Qinghe Zhao , Feng Pan , Shisheng Zheng , Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031
Abiduweili Sikandaier , Yukun Zhu , Dongjiang Yang . In-situ decorated cobalt phosphide cocatalyst on Hittorf's phosphorus triggering efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(2): 100242-100242. doi: 10.1016/j.cjsc.2024.100242
Jiangping Chen , Hongju Ren , Kai Wu , Huihuang Fang , Chongqi Chen , Li Lin , Yu Luo , Lilong Jiang . Boosting hydrogen production of ammonia decomposition via the construction of metal-oxide interfaces. Chinese Journal of Structural Chemistry, 2024, 43(2): 100236-100236. doi: 10.1016/j.cjsc.2024.100236
Fabrice Nelly Habarugira , Ducheng Yao , Wei Miao , Chengcheng Chu , Zhong Chen , Shun Mao . Synergy of sodium doping and nitrogen defects in carbon nitride for promoted photocatalytic synthesis of hydrogen peroxide. Chinese Chemical Letters, 2024, 35(8): 109886-. doi: 10.1016/j.cclet.2024.109886
Jiao Li , Chenyang Zhang , Chuhan Wu , Yan Liu , Xuejian Zhang , Xiao Li , Yongtao Li , Jing Sun , Zhongmin Su . Defined organic-octamolybdate crystalline superstructures derived Mo2C@C as efficient hydrogen evolution electrocatalysts. Chinese Chemical Letters, 2024, 35(6): 108782-. doi: 10.1016/j.cclet.2023.108782
Bin Dong , Ning Yu , Qiu-Yue Wang , Jing-Ke Ren , Xin-Yu Zhang , Zhi-Jie Zhang , Ruo-Yao Fan , Da-Peng Liu , Yong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221
Minying Wu , Xueliang Fan , Wenbiao Zhang , Bin Chen , Tong Ye , Qian Zhang , Yuanyuan Fang , Yajun Wang , Yi Tang . Highly dispersed Ru nanospecies on N-doped carbon/MXene composite for highly efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109258-. doi: 10.1016/j.cclet.2023.109258
Wengao Zeng , Yuchen Dong , Xiaoyuan Ye , Ziying Zhang , Tuo Zhang , Xiangjiu Guan , Liejin Guo . Crystalline carbon nitride with in-plane built-in electric field accelerates carrier separation for excellent photocatalytic hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109252-. doi: 10.1016/j.cclet.2023.109252
Tiantian Li , Ruochen Jin , Bin Wu , Dongming Lan , Yunjian Ma , Yonghua Wang . A novel insight of enhancing the hydrogen peroxide tolerance of unspecific peroxygenase from Daldinia caldariorum based on structure. Chinese Chemical Letters, 2024, 35(4): 108701-. doi: 10.1016/j.cclet.2023.108701