Effect of Chain Extender on Hydrogen Bond and Microphase Structure of Biodegradable Thermoplastic Polyurethanes
- Corresponding author: Jie-Hua Li, jiehua_li@scu.edu.cn Hong Tan, hongtan@scu.edu.cn
Citation:
Wen-Kai Liu, Yun Zhao, Rong Wang, Feng Luo, Jian-Shu Li, Jie-Hua Li, Hong Tan. Effect of Chain Extender on Hydrogen Bond and Microphase Structure of Biodegradable Thermoplastic Polyurethanes[J]. Chinese Journal of Polymer Science,
;2018, 36(4): 514-520.
doi:
10.1007/s10118-018-2020-3
Cherng J. Y., Hou T. Y., Shih M. F., Talsma H., Hennink W. E.. Polyurethane-based drug delivery systems[J]. Int. J. Pharm., 2013,450(1):145-162.
Zdrahala R. J., Zdrahala I. J.. Biomedical applications of polyurethanes:a review of past promises, present realities, and a vibrant future[J]. J. Biomater. Appl., 1999,14(1):67-90. doi: 10.1177/088532829901400104
Guelcher S. A.. Biodegradable polyurethanes:synthesis and applications in regenerative medicine[J]. Tissue Eng., Part B:Reviews, 2008,14(1):3-17. doi: 10.1089/teb.2007.0133
Guan J., Fujimoto K. L., Sacks M. S., Wagner W. R.. Preparation and characterization of highly porous, biodegradable polyurethane scaffolds for soft tissue applications[J]. Biomaterials, 2005,26(18):3961-3971. doi: 10.1016/j.biomaterials.2004.10.018
Song N. J., Jiang X., Li J. H., Pang Y., Li J. S., Tan H., Fu Q.. The degradation and biocompatibility of waterborne biodegradable polyurethanes for tissue engineering[J]. Chinese J. Polym. Sci., 2013,31(10):1451-1462. doi: 10.1007/s10118-013-1315-7
Ding M. M., Song N. J., He X. L., Li J. H., Zhou L. J., Tan H., Fu Q., Gu Q.. Toward the next-generation nanomedicines:design of multifunctional multiblock polyurethanes for effective cancer treatment[J]. ACS Nano, 2013,7(3):1918-1928. doi: 10.1021/nn4002769
Eceiza A., Martin M., de la Caba K., Kortaberria G., Gabilondo N., Corcuera M., Mondragon I.. Thermoplastic polyurethane elastomers based on polycarbonate diols with different soft segment molecular weight and chemical structure:mechanical and thermal properties[J]. Polym. Eng. Sci., 2008,48(2):297-306. doi: 10.1002/(ISSN)1548-2634
Spontak R. J., Patel N. P.. Thermoplastic elastomers:fundamentals and applications[J]. Curr. Opin. Colloid Interface Sci., 2000,5(5):333-340.
Wang W. S., Ping P., Yu H. J., Chen X. S., Jing X. B.. Synthesis and characterization of a novel biodegradable, thermoplastic polyurethane elastomer[J]. J. Polym. Sci., Part A:Polym. Chem., 2010,44(19):5505-5512.
Huang W., Yang B., Zhao Y., Di ng, Z; Huang W. M., Yang B., Zhao Y.. Thermo-moisture responsive polyurethane shape-memory polymer and composites:a review.[J]. J. Mater. Chem., 2010,20(17):3367-3381. doi: 10.1039/b922943d
Lai S. M., Lan Y. C.. Shape memory properties of melt-blended polylactic acid (PLA)/thermoplastic polyurethane (TPU) bio-based blends[J]. J. Polym. Res., 2013,20(5):140-147. doi: 10.1007/s10965-013-0140-6
Cui B., Wu Q. Y., Shen L., Yu H. B.. High performance bio-based polyurethane elastomers:effect of different soft and hard segments[J]. Chinese J. Polym. Sci., 2016,34(7):901-909. doi: 10.1007/s10118-016-1811-7
Guelcher S. A., Srinivasan A., Dumas J. E., Didier J. E., McBride S., Hollinger , J. O.. Synthesis, mechanical properties, biocompatibility, and biodegradation of polyurethane networks from lysine polyisocyanates.[J]. Biomaterials, 2008,29(12):1762-1775. doi: 10.1016/j.biomaterials.2007.12.046
Lee B. S., Chun B. C., Chung Y. C., Sul K. I., Cho J. W.. Structure and thermomechanical properties of polyurethane block copolymers with shape memory effect[J]. Macromolecules, 2001,34(18):6431-6437. doi: 10.1021/ma001842l
Yang B., Huang W. M., Li C., Li L.. Effects of moisture on the thermomechanical properties of a polyurethane shape memory polymer[J]. Polymer, 2006,47(4):1348-1356. doi: 10.1016/j.polymer.2005.12.051
Huang W. M., Yang B., An L., Li C., Chan Y.. Water-driven programmable polyurethane shape memory polymer:demonstration and mechanism[J]. Appl. Phys. Lett., 2005,86(11)114105. doi: 10.1063/1.1880448
Altıntaş Z., Çakmakçı , E.; Kahraman M. V., Kayaman-Apohan N.. Thioether functional chain extender for thermoplastic polyurethanes[J]. Chinese J. Polym. Sci., 2015,33(6):850-856. doi: 10.1007/s10118-015-1636-9
Ping P., Wang W. S., Chen X. S., Jing X. B.. Poly(ε-caprolactone) polyurethane and its shape-memory property[J]. Biomacromolecules, 2005,6(2):587-592. doi: 10.1021/bm049477j
Zhou L. J., Yu L. Q., Ding M. M., Li J. S., Tan H., Wang Z. G., Fu Q.. Synthesis and characterization of pH-sensitive biodegradable polyurethane for potential drug delivery applications[J]. Macromolecules, 2011,44(4):857-864. doi: 10.1021/ma102346a
Rabani G., Luftmann H., Kraft A.. Synthesis and characterization of two shape-memory polymers containing short aramid hard segments and poly(ε-caprolactone) soft segments[J]. Polymer, 2006,47(12):4251-4260. doi: 10.1016/j.polymer.2006.03.106
Li F., Zhang X., Hou J., Xu M., Luo X., Ma D., Kim B. K.. Studies on thermally stimulated shape memory effect of segmented polyurethanes[J]. J. Appl. Polym. Sci., 1997,64(8):1511-1516. doi: 10.1002/(ISSN)1097-4628
Kim B. K., Lee S. Y., Xu M.. Polyurethanes having shape memory effects[J]. Polymer, 1996,37(26):5781-5793. doi: 10.1016/S0032-3861(96)00442-9
Bogdanov B., Toncheva V., Schacht E., Finelli L., Sarti B., Scandola M.. Physical properties of poly(ester-urethanes) prepared from different molar mass polycaprolactone-diols[J]. Polymer, 1999,40(11):3171-3182. doi: 10.1016/S0032-3861(98)00552-7
Chen C. P., Dai S. A., Chang H. L., Su W. C., Wu T. M., Jeng R. J.. Polyurethane elastomers through multi-hydrogen-bonded association of dendritic structures[J]. Polymer, 2005,46(25):11849-11857. doi: 10.1016/j.polymer.2005.06.127
Jiang X., Li J. H., Ding M. M., Tan H., Ling Q. Y., Zhong Y. P., Fu Q.. Synthesis and degradation of nontoxic biodegradable waterborne polyurethanes elastomer with poly(ε-caprolactone) and poly(ethylene glycol) as soft segment[J]. Eur. Polym. J., 2007,43(5):1838-1846. doi: 10.1016/j.eurpolymj.2007.02.029
Seymour R., Estes G., Cooper S.. Infrared studies of segmented polyurethan elastomers[J]. I. Hydrogen bonding. Macromolecules, 1970,3(5):579-583.
Su T., Wang G. Y., Xu D. X., Hu C. P.. Preparation and properties of waterborne poly-urethaneurea consisting of fluorinated siloxane units[J]. J. Polym. Sci., Part A:Polym. Chem., 2006,44(10):3365-3373. doi: 10.1002/(ISSN)1099-0518
Jaeheon Lee , Jung Hyeun Kim . Effect of thermal annealing on cold crystallization ability of thermoset polyurethane elastomer synthesized from fully bio-derived polyol. Chinese Journal of Structural Chemistry, 2025, 44(5): 100568-100568. doi: 10.1016/j.cjsc.2025.100568
Yi-Chang Yang , Rui-Xi Wang , Li-Ming Wu , Ling Chen . Regulating the coplanarity of π-conjugated units through hydrogen bonding in FAHC2O4 and FAH2C3N3S3 crystals. Chinese Journal of Structural Chemistry, 2025, 44(10): 100714-100714. doi: 10.1016/j.cjsc.2025.100714
Chu Zeng , Han Yang , Ming Xu , Zhi-Yuan Gu . Optimizing COF crystallinity for high-resolution GC separation. Chinese Chemical Letters, 2026, 37(1): 110064-. doi: 10.1016/j.cclet.2024.110064
Yun Zhou , Geqian Fang , Haiyan Wang , Wenjun Yu , Chun Zhu , Jin-Xia Liang , Jian Lin . Non-covalent interactions between adsorbed •OH species and UiO-66-NH2 for methane hydroxylation. Chinese Journal of Structural Chemistry, 2025, 44(8): 100629-100629. doi: 10.1016/j.cjsc.2025.100629
Xinyu Liu , Jialin Yang , Zonglin He , Jiaoyan Ai , Lina Song , Baohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236
Qiao Zhang , Xin Tan , Zihang Liu , Jingyu Ma , Dongqi Cao , Fenfang Li , Shengyi Dong . Optically healable and mechanically tough supramolecular glass from low-molecular-weight compounds. Chinese Chemical Letters, 2025, 36(8): 110660-. doi: 10.1016/j.cclet.2024.110660
Fangzhou Wang , Wentong Gao , Chenghui Li . A weak but inert hindered urethane bond for high-performance dynamic polyurethane polymers. Chinese Chemical Letters, 2024, 35(5): 109305-. doi: 10.1016/j.cclet.2023.109305
Huiying Xu , Minghui Liang , Zhi Zhou , Hui Gao , Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011
Xue Wu , Yupeng Liu , Bingzhe Wang , Lingyun Li , Zhenjian Li , Qingcheng Wang , Quansheng Cheng , Guichuan Xing , Songnan Qu . Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy. Acta Physico-Chimica Sinica, 2025, 41(9): 100109-0. doi: 10.1016/j.actphy.2025.100109
Xiaoya Cui , Yanchang Liu , Qiang Li , He Zhu , Shibo Xi , Jianrong Zeng . Ultrafast crystallinity engineering of PtCo3 alloy for enhanced oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(5): 110069-. doi: 10.1016/j.cclet.2024.110069
Ziqi Chen , Miriding Mutailipu . Achieving the birefringence-bandgap trade-off: hydrogen-bond engineered biuret-cyanurate. Chinese Journal of Structural Chemistry, 2025, 44(10): 100695-100695. doi: 10.1016/j.cjsc.2025.100695
Xiaodong Zhang , Bohui Xu , Deshuai Xiao , Xinyuan Zhang , Pifu Gong , Zheshuai Lin . From centrosymmetric CN3H6C6H5SO3 to non-centrosymmetric CN3H6C6H4SO3(OH): Hydroxyl introduced hydrogen bond reconstruction to realize strong second harmonic generation. Chinese Journal of Structural Chemistry, 2025, 44(10): 100707-100707. doi: 10.1016/j.cjsc.2025.100707
Qihang Wu , Hui Wen , Wenhai Lin , Tingting Sun , Zhigang Xie . Alkyl chain engineering of boron dipyrromethenes for efficient photodynamic antibacterial treatment. Chinese Chemical Letters, 2024, 35(12): 109692-. doi: 10.1016/j.cclet.2024.109692
Huiju Cao , Lei Shi . sp1-Hybridized linear and cyclic carbon chain. Chinese Chemical Letters, 2025, 36(4): 110466-. doi: 10.1016/j.cclet.2024.110466
Bo-Ran Chang , Lin Deng , Qing-Lian Wu , Wan-Qian Guo , Hui-Ying Xue . A review: Carbon-based materials as effective additives in anaerobic fermentation, focusing on microbial chain elongation and medium chain fatty acids production. Chinese Chemical Letters, 2025, 36(7): 110411-. doi: 10.1016/j.cclet.2024.110411
Yang Qin , Jiangtian Li , Xuehao Zhang , Kaixuan Wan , Heao Zhang , Feiyang Huang , Limei Wang , Hongxun Wang , Longjie Li , Xianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826
Yifei Zhang , Yuncong Xue , Laiwei Gao , Rui Liao , Feng Wang , Fei Wang . Merging non-covalent and covalent crosslinking: En route to single chain nanoparticles. Chinese Chemical Letters, 2024, 35(6): 109217-. doi: 10.1016/j.cclet.2023.109217
Haoran Shi , Jiaxin Wang , Yuqin Zhu , Hongyang Li , Guodong Ju , Lanlan Zhang , Chao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333
Yao HUANG , Yingshu WU , Zhichun BAO , Yue HUANG , Shangfeng TANG , Ruixue LIU , Yancheng LIU , Hong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359
Ying Chen , Lun Li , Guohao Han , Ren Liu , Guanghui An , Yi Zhu . Macromolecular coumarin sulfonium salt with side chain effect constructed by copolymerization strategy for free radical, cationic, and hybrid photopolymerizations. Chinese Chemical Letters, 2025, 36(7): 110458-. doi: 10.1016/j.cclet.2024.110458