Citation: Wen-Kai Liu, Yun Zhao, Rong Wang, Feng Luo, Jian-Shu Li, Jie-Hua Li, Hong Tan. Effect of Chain Extender on Hydrogen Bond and Microphase Structure of Biodegradable Thermoplastic Polyurethanes[J]. Chinese Journal of Polymer Science, ;2018, 36(4): 514-520. doi: 10.1007/s10118-018-2020-3 shu

Effect of Chain Extender on Hydrogen Bond and Microphase Structure of Biodegradable Thermoplastic Polyurethanes

  • Thermomechanical properties of polyurethanes (PUs) strongly depend on the molecular interactions and microphase structure. In this work, two chain extenders with different ratios, flexile 1, 4-butanediol (BDO) and branched trimethylolpropane mono allyl ether (TMPAE), are used to tune the molecular interactions and microphase structures of a series of biodegradable thermoplastic polyurethanes (TPUs). In TPUs, the biodegradable polycaprolactone (PCL, Mn of 2000) is used as soft segment while 1, 6-diisocyanatohexane (HDI) and chain extenders are used as hard segment. Fourier transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance spectroscppy (1H-NMR), gel permeation chromatography (GPC), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA) and mechanical tests were performed to characterize the bulk structure and properties of TPUs. Compared with BDO, the steric bulk of TMPAE is larger. The increment of TMPAE can help to increase the hydrogen bond content, microphase separation, and the elastic modulus ratio (R), which would strongly affect the thermomechanical property of the TPUs. The results of this work verify the importance of the structure of chain extender on the properties of TPUs. It provides valuable information for further understanding the structure-property relationships of these polyurethanes.
  • 加载中
    1. [1]

      Cherng J. Y., Hou T. Y., Shih M. F., Talsma H., Hennink W. E.. Polyurethane-based drug delivery systems[J]. Int. J. Pharm., 2013,450(1):145-162.  

    2. [2]

      Zdrahala R. J., Zdrahala I. J.. Biomedical applications of polyurethanes:a review of past promises, present realities, and a vibrant future[J]. J. Biomater. Appl., 1999,14(1):67-90. doi: 10.1177/088532829901400104

    3. [3]

      Guelcher S. A.. Biodegradable polyurethanes:synthesis and applications in regenerative medicine[J]. Tissue Eng., Part B:Reviews, 2008,14(1):3-17. doi: 10.1089/teb.2007.0133

    4. [4]

      Guan J., Fujimoto K. L., Sacks M. S., Wagner W. R.. Preparation and characterization of highly porous, biodegradable polyurethane scaffolds for soft tissue applications[J]. Biomaterials, 2005,26(18):3961-3971. doi: 10.1016/j.biomaterials.2004.10.018

    5. [5]

      Song N. J., Jiang X., Li J. H., Pang Y., Li J. S., Tan H., Fu Q.. The degradation and biocompatibility of waterborne biodegradable polyurethanes for tissue engineering[J]. Chinese J. Polym. Sci., 2013,31(10):1451-1462. doi: 10.1007/s10118-013-1315-7

    6. [6]

      Ding M. M., Song N. J., He X. L., Li J. H., Zhou L. J., Tan H., Fu Q., Gu Q.. Toward the next-generation nanomedicines:design of multifunctional multiblock polyurethanes for effective cancer treatment[J]. ACS Nano, 2013,7(3):1918-1928. doi: 10.1021/nn4002769

    7. [7]

      Eceiza A., Martin M., de la Caba K., Kortaberria G., Gabilondo N., Corcuera M., Mondragon I.. Thermoplastic polyurethane elastomers based on polycarbonate diols with different soft segment molecular weight and chemical structure:mechanical and thermal properties[J]. Polym. Eng. Sci., 2008,48(2):297-306. doi: 10.1002/(ISSN)1548-2634

    8. [8]

      Spontak R. J., Patel N. P.. Thermoplastic elastomers:fundamentals and applications[J]. Curr. Opin. Colloid Interface Sci., 2000,5(5):333-340.  

    9. [9]

      Wang W. S., Ping P., Yu H. J., Chen X. S., Jing X. B.. Synthesis and characterization of a novel biodegradable, thermoplastic polyurethane elastomer[J]. J. Polym. Sci., Part A:Polym. Chem., 2010,44(19):5505-5512.  

    10. [10]

      Huang W., Yang B., Zhao Y., Di ng, Z; Huang W. M., Yang B., Zhao Y.. Thermo-moisture responsive polyurethane shape-memory polymer and composites:a review.[J]. J. Mater. Chem., 2010,20(17):3367-3381. doi: 10.1039/b922943d

    11. [11]

      Lai S. M., Lan Y. C.. Shape memory properties of melt-blended polylactic acid (PLA)/thermoplastic polyurethane (TPU) bio-based blends[J]. J. Polym. Res., 2013,20(5):140-147. doi: 10.1007/s10965-013-0140-6

    12. [12]

      Cui B., Wu Q. Y., Shen L., Yu H. B.. High performance bio-based polyurethane elastomers:effect of different soft and hard segments[J]. Chinese J. Polym. Sci., 2016,34(7):901-909. doi: 10.1007/s10118-016-1811-7

    13. [13]

      Guelcher S. A., Srinivasan A., Dumas J. E., Didier J. E., McBride S., Hollinger , J. O.. Synthesis, mechanical properties, biocompatibility, and biodegradation of polyurethane networks from lysine polyisocyanates.[J]. Biomaterials, 2008,29(12):1762-1775. doi: 10.1016/j.biomaterials.2007.12.046

    14. [14]

      Lee B. S., Chun B. C., Chung Y. C., Sul K. I., Cho J. W.. Structure and thermomechanical properties of polyurethane block copolymers with shape memory effect[J]. Macromolecules, 2001,34(18):6431-6437. doi: 10.1021/ma001842l

    15. [15]

      Yang B., Huang W. M., Li C., Li L.. Effects of moisture on the thermomechanical properties of a polyurethane shape memory polymer[J]. Polymer, 2006,47(4):1348-1356. doi: 10.1016/j.polymer.2005.12.051

    16. [16]

      Huang W. M., Yang B., An L., Li C., Chan Y.. Water-driven programmable polyurethane shape memory polymer:demonstration and mechanism[J]. Appl. Phys. Lett., 2005,86(11)114105. doi: 10.1063/1.1880448

    17. [17]

      Altıntaş Z., Çakmakçı , E.; Kahraman M. V., Kayaman-Apohan N.. Thioether functional chain extender for thermoplastic polyurethanes[J]. Chinese J. Polym. Sci., 2015,33(6):850-856. doi: 10.1007/s10118-015-1636-9

    18. [18]

      Ping P., Wang W. S., Chen X. S., Jing X. B.. Poly(ε-caprolactone) polyurethane and its shape-memory property[J]. Biomacromolecules, 2005,6(2):587-592. doi: 10.1021/bm049477j

    19. [19]

      Zhou L. J., Yu L. Q., Ding M. M., Li J. S., Tan H., Wang Z. G., Fu Q.. Synthesis and characterization of pH-sensitive biodegradable polyurethane for potential drug delivery applications[J]. Macromolecules, 2011,44(4):857-864. doi: 10.1021/ma102346a

    20. [20]

      Rabani G., Luftmann H., Kraft A.. Synthesis and characterization of two shape-memory polymers containing short aramid hard segments and poly(ε-caprolactone) soft segments[J]. Polymer, 2006,47(12):4251-4260. doi: 10.1016/j.polymer.2006.03.106

    21. [21]

      Li F., Zhang X., Hou J., Xu M., Luo X., Ma D., Kim B. K.. Studies on thermally stimulated shape memory effect of segmented polyurethanes[J]. J. Appl. Polym. Sci., 1997,64(8):1511-1516. doi: 10.1002/(ISSN)1097-4628

    22. [22]

      Kim B. K., Lee S. Y., Xu M.. Polyurethanes having shape memory effects[J]. Polymer, 1996,37(26):5781-5793. doi: 10.1016/S0032-3861(96)00442-9

    23. [23]

      Bogdanov B., Toncheva V., Schacht E., Finelli L., Sarti B., Scandola M.. Physical properties of poly(ester-urethanes) prepared from different molar mass polycaprolactone-diols[J]. Polymer, 1999,40(11):3171-3182. doi: 10.1016/S0032-3861(98)00552-7

    24. [24]

      Chen C. P., Dai S. A., Chang H. L., Su W. C., Wu T. M., Jeng R. J.. Polyurethane elastomers through multi-hydrogen-bonded association of dendritic structures[J]. Polymer, 2005,46(25):11849-11857. doi: 10.1016/j.polymer.2005.06.127

    25. [25]

      Jiang X., Li J. H., Ding M. M., Tan H., Ling Q. Y., Zhong Y. P., Fu Q.. Synthesis and degradation of nontoxic biodegradable waterborne polyurethanes elastomer with poly(ε-caprolactone) and poly(ethylene glycol) as soft segment[J]. Eur. Polym. J., 2007,43(5):1838-1846. doi: 10.1016/j.eurpolymj.2007.02.029

    26. [26]

      Seymour R., Estes G., Cooper S.. Infrared studies of segmented polyurethan elastomers[J]. I. Hydrogen bonding. Macromolecules, 1970,3(5):579-583.  

    27. [27]

      Su T., Wang G. Y., Xu D. X., Hu C. P.. Preparation and properties of waterborne poly-urethaneurea consisting of fluorinated siloxane units[J]. J. Polym. Sci., Part A:Polym. Chem., 2006,44(10):3365-3373. doi: 10.1002/(ISSN)1099-0518

  • 加载中
    1. [1]

      Jaeheon Lee Jung Hyeun Kim . Effect of thermal annealing on cold crystallization ability of thermoset polyurethane elastomer synthesized from fully bio-derived polyol. Chinese Journal of Structural Chemistry, 2025, 44(5): 100568-100568. doi: 10.1016/j.cjsc.2025.100568

    2. [2]

      Yi-Chang Yang Rui-Xi Wang Li-Ming Wu Ling Chen . Regulating the coplanarity of π-conjugated units through hydrogen bonding in FAHC2O4 and FAH2C3N3S3 crystals. Chinese Journal of Structural Chemistry, 2025, 44(10): 100714-100714. doi: 10.1016/j.cjsc.2025.100714

    3. [3]

      Chu ZengHan YangMing XuZhi-Yuan Gu . Optimizing COF crystallinity for high-resolution GC separation. Chinese Chemical Letters, 2026, 37(1): 110064-. doi: 10.1016/j.cclet.2024.110064

    4. [4]

      Yun Zhou Geqian Fang Haiyan Wang Wenjun Yu Chun Zhu Jin-Xia Liang Jian Lin . Non-covalent interactions between adsorbed •OH species and UiO-66-NH2 for methane hydroxylation. Chinese Journal of Structural Chemistry, 2025, 44(8): 100629-100629. doi: 10.1016/j.cjsc.2025.100629

    5. [5]

      Xinyu LiuJialin YangZonglin HeJiaoyan AiLina SongBaohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236

    6. [6]

      Qiao ZhangXin TanZihang LiuJingyu MaDongqi CaoFenfang LiShengyi Dong . Optically healable and mechanically tough supramolecular glass from low-molecular-weight compounds. Chinese Chemical Letters, 2025, 36(8): 110660-. doi: 10.1016/j.cclet.2024.110660

    7. [7]

      Fangzhou WangWentong GaoChenghui Li . A weak but inert hindered urethane bond for high-performance dynamic polyurethane polymers. Chinese Chemical Letters, 2024, 35(5): 109305-. doi: 10.1016/j.cclet.2023.109305

    8. [8]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    9. [9]

      Xue WuYupeng LiuBingzhe WangLingyun LiZhenjian LiQingcheng WangQuansheng ChengGuichuan XingSongnan Qu . Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy. Acta Physico-Chimica Sinica, 2025, 41(9): 100109-0. doi: 10.1016/j.actphy.2025.100109

    10. [10]

      Xiaoya CuiYanchang LiuQiang LiHe ZhuShibo XiJianrong Zeng . Ultrafast crystallinity engineering of PtCo3 alloy for enhanced oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(5): 110069-. doi: 10.1016/j.cclet.2024.110069

    11. [11]

      Ziqi Chen Miriding Mutailipu . Achieving the birefringence-bandgap trade-off: hydrogen-bond engineered biuret-cyanurate. Chinese Journal of Structural Chemistry, 2025, 44(10): 100695-100695. doi: 10.1016/j.cjsc.2025.100695

    12. [12]

      Xiaodong Zhang Bohui Xu Deshuai Xiao Xinyuan Zhang Pifu Gong Zheshuai Lin . From centrosymmetric CN3H6C6H5SO3 to non-centrosymmetric CN3H6C6H4SO3(OH): Hydroxyl introduced hydrogen bond reconstruction to realize strong second harmonic generation. Chinese Journal of Structural Chemistry, 2025, 44(10): 100707-100707. doi: 10.1016/j.cjsc.2025.100707

    13. [13]

      Qihang WuHui WenWenhai LinTingting SunZhigang Xie . Alkyl chain engineering of boron dipyrromethenes for efficient photodynamic antibacterial treatment. Chinese Chemical Letters, 2024, 35(12): 109692-. doi: 10.1016/j.cclet.2024.109692

    14. [14]

      Huiju CaoLei Shi . sp1-Hybridized linear and cyclic carbon chain. Chinese Chemical Letters, 2025, 36(4): 110466-. doi: 10.1016/j.cclet.2024.110466

    15. [15]

      Bo-Ran ChangLin DengQing-Lian WuWan-Qian GuoHui-Ying Xue . A review: Carbon-based materials as effective additives in anaerobic fermentation, focusing on microbial chain elongation and medium chain fatty acids production. Chinese Chemical Letters, 2025, 36(7): 110411-. doi: 10.1016/j.cclet.2024.110411

    16. [16]

      Yang QinJiangtian LiXuehao ZhangKaixuan WanHeao ZhangFeiyang HuangLimei WangHongxun WangLongjie LiXianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826

    17. [17]

      Yifei ZhangYuncong XueLaiwei GaoRui LiaoFeng WangFei Wang . Merging non-covalent and covalent crosslinking: En route to single chain nanoparticles. Chinese Chemical Letters, 2024, 35(6): 109217-. doi: 10.1016/j.cclet.2023.109217

    18. [18]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    19. [19]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    20. [20]

      Ying ChenLun LiGuohao HanRen LiuGuanghui AnYi Zhu . Macromolecular coumarin sulfonium salt with side chain effect constructed by copolymerization strategy for free radical, cationic, and hybrid photopolymerizations. Chinese Chemical Letters, 2025, 36(7): 110458-. doi: 10.1016/j.cclet.2024.110458

Metrics
  • PDF Downloads(0)
  • Abstract views(1414)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return