Citation: Li-Wen Hu, Liang Li, Yong Yang, Ting Guo, Yu-Hao Zhang, Wei Yang, Yong Cao. Green-emitting Polyfluorenes Containing Hexylthiophen-dibenzothiophene-S, S-dioxide Unit with Large Two-photon Absorption Cross Section[J]. Chinese Journal of Polymer Science, ;2018, 36(4): 546-554. doi: 10.1007/s10118-018-2017-y shu

Green-emitting Polyfluorenes Containing Hexylthiophen-dibenzothiophene-S, S-dioxide Unit with Large Two-photon Absorption Cross Section

  • Green light-emitting polyfluorenes containing 3, 7-bis(4-hexylthiophen-2-yl)dibenzo[b, d]thiophene 5, 5-dioxide (DHTSO) unit were synthesized. All the resulted polymers show high thermal stability with the decomposition temperatures (Td) over 420℃ and the glass transition temperatures (Tg) over 75℃. The polymers exhibit the enhanced highest occupied molecular orbital (HOMO) energy levels and the depressed lowest unoccupied molecular orbital (LUMO) energy levels with the increase of DHTSO unit in polymers. The photoluminescence (PL) spectra of the polymers show positive solvatochromism in solution with the variation of solution polarities, indicating remarkable intramolecular charge transfer (ICT) effect in the polymers containing DHTSO moiety. The fluorescence quantum yields (φPL) are in the range of 34%-67% for PF-DHTSOs in film. All polymers possess two photon absorption (TPA) properties, and the TPA cross sections (δ2) are enhanced with increasing DHTSO unit in polymers. The highest δ2 is 2392 GM for PF-DHTSO15 in chloroform solution upon 740 nm excitation. The device of PF-DHTSO15 shows green emission with the Commission Internationale de L'. Eclairage (CIE) coordinates of (0.26, 0.59), and the maximum luminous efficiency (LEmax) of 10.8 cd·A-1 with the configuration of ITO/PEDOT:PSS/EL/CsF/Al. These results indicate that introducing DHTSO unit into polyfluorene backbone could be a promising molecular design strategy for TPA and effective green-light emission.
  • 加载中
    1. [1]

      Xie L. H., Yin C. R., Lai W. Y., Fan Q. L., Huang W.. Polyfluorene-based semiconductors combined with various periodic table elements for organic electronics[J]. Prog. Polym. Sci., 2012,37(9):1192-1264. doi: 10.1016/j.progpolymsci.2012.02.003

    2. [2]

      Zhu M. R., Yang C. L.. Blue fluorescent emitters:design tactics and applications in organic light-emitting diodes[J]. Chem. Soc. Rev., 2013,42:4963-4976. doi: 10.1039/c3cs35440g

    3. [3]

      Jiang G. X., Bian C. L., Ding J. Q., Wang L. X.. Synthesis and characterization of blue light-emitting poly(aryl ether)s containing pyrimidine-incorporated oligofluorene pendants with bipolar feature[J]. Chinese J. Polym. Sci., 2013,31(5):787-797. doi: 10.1007/s10118-013-1279-7

    4. [4]

      Wu W. B., Tang R. L., Li Q. Q., Li Z.. Functional hyperbranched polymers with advanced optical, electrical and magnetic properties[J]. Chem. Soc. Rev., 2015,44:3997-4022. doi: 10.1039/C4CS00224E

    5. [5]

      Chen S. H., Su A. C., Su C. H., Chen S. A.. Crystalline forms and emission behavior of poly(9, 9-di-n-octyl-2, 7-fluorene)[J]. Macromolecules, 2005,38(2):379-385. doi: 10.1021/ma048162t

    6. [6]

      Hu S. J., Zhu M. R., Zou Q. H., Wu H. B., Yang C. L., Wong W. Y., Yang W., Peng J. B., Cao Y.. Efficient hybrid white polymer light-emitting devices with electroluminescence covered the entire visible range and reduced efficiency roll-off[J]. Appl. Phys. Lett., 2012,100(6)063304. doi: 10.1063/1.3682526

    7. [7]

      Schelkle K. M., Bender M., Jeltsch K., Buckup T., Mîllen K., Hamburger M.. Light-induced solubility modulation of polyfluorene to enhance the performance of OLEDs[J]. Angew. Chem. Int. Ed., 2015,54(48):14545-14548. doi: 10.1002/anie.201505141

    8. [8]

      Liu W., Sun M. L., Liu Q., He B. L., Ge H. L., Sun M., Zhang Q. J., Wang W.. An electrochemically prepared sky-blue light emitting ether functionalized polyfluorene as chemosensor for metal ions[J]. Chinese J. Polym. Sci., 2013,31(11):1579-1589. doi: 10.1007/s10118-013-1352-2

    9. [9]

      Chen L., Li P. C., Tong H., Xie Z. Y., Wang L. X., Jing X. B., Wang F. S.. White electroluminescent single-polymer achieved by incorporating three polyfluorene blue arms into a star-shaped orange core[J]. J. Polym. Sci., Part A:Polym. Chem., 2012,50(14):2854-2862. doi: 10.1002/pola.26061

    10. [10]

      Xiao H. P., Yu L., Li Y. H., Yang W., Zhang B., Yang W., Wu H. B., Cao Y.. Novel green light-emitting polyfluorenes containing dibenzothiophene-S, S-dioxide-arylamine derivatives[J]. Polymer, 2012,53(14):2873-2883. doi: 10.1016/j.polymer.2012.05.011

    11. [11]

      Li J. Y., Ziegler A., Wegner G.. Substituent effect to prevent autoxidation and improve spectral stability in blue light-emitting polyfluorenes[J]. Chem. Eur. J., 2005,11(15):4450-4457. doi: 10.1002/chem.v11:15

    12. [12]

      Kim G., Basarir F., Yoon T. H.. Synthesis and characterization of poly(triphenyl-amine)s with electron-withdrawing trifluoromethyl side groups for emissive and hole-transporting layer[J]. Synth. Met., 2011,161(19-20):2092-2096. doi: 10.1016/j.synthmet.2011.07.026

    13. [13]

      Purc A., Sobczyk K., Sakagam Y., Ando A., Kamada K., Gryko D. T.. Strategy towards large two-photon absorption cross-sections for diketopyrrolopyrroles[J]. J. Mater. Chem. C, 2015,3(4):742-749. doi: 10.1039/C4TC02375G

    14. [14]

      Goswami S., Winkel R. W., Schanze K. S.. Photophysics and nonlinear absorption of Gold(I) and Platinum(Ⅱ) donor-acceptor-donor chromophores[J]. Inorg. Chem., 2015,54(20):10007-10014. doi: 10.1021/acs.inorgchem.5b01767

    15. [15]

      Hu W. B., He T. C., Jiang R. C., Yin J., Li L., Lu X. M., Zhao H., Zhang L., Huang L., Sun H. D., Huang W., Fan Q. L.. Inner salt-shaped small molecular photosensitizer with extremely enhanced two-photon absorption for mitochondrial-targeted photodynamic therapy[J]. Chem. Commun., 2017,53(10):1680-1683. doi: 10.1039/C6CC09473B

    16. [16]

      Zhou W. Y., Jin F., Huang X. B., Duan X. M., Zhan X. W.. A low-bandgap conjugated copolymer based on porphyrin and dithienocoronene diimide with strong two-photon absorption[J]. Macromolecules, 2012,45(19):7823-7828. doi: 10.1021/ma3015257

    17. [17]

      Huang X. B., Shi Q. Q., Chen W. Q., Zhu C. L., Zhou W. Y., Zhao Z., Duan X. M., Zhan X. W.. Low-bandgap conjugated donor-acceptor copolymers based on porphyrin with strong two-photon absorption[J]. Macromolecules, 2010,43(23):9620-9626. doi: 10.1021/ma102275h

    18. [18]

      Mariz I. F. A., Maçôas E. M. S., Martinho J. M. G., Zou L., Zhou P. C., Chen X. G., Qin J. G.. Molecular architecture effects in two-photon absorption:from octupolar molecules to polymers and hybrid polymer nanoparticles based on 1, 3, 5-triazine[J]. J. Mater. Chem. B, 2013,1(16):2169-2177. doi: 10.1039/c3tb20107d

    19. [19]

      Zhou P. C., Zhong C., Chen X. G., Qin J. G., Mariz I. E.. Maçôas E. New kind of hyperbranched conjugated polymers containing alkyl-modified 2, 4, 6-tris(thiophen-2-yl)-1, 3, 5-triazine unit for enhancing two-photon absorption[J]. Macromolecules, 2014,47(19):6679-6686. doi: 10.1021/ma500914v

    20. [20]

      King S. M., Perepichka I. I., Perepichka I. F., Dias F. B., Bryce M. R., Monkman A. P.. Exploiting a dual-fluorescence process in fluorene-dibenzothiophene-S, S-dioxide co-polymers to give efficient single polymer LEDs with broadened emission[J]. Adv. Funct. Mater., 2009,19(4):586-591. doi: 10.1002/adfm.v19:4

    21. [21]

      He, Xu, Yang, Cai, Chen, Ying, Yang, C, Y. Dibenzothiophene-S, S-dioxide based medium-band-gap polymers for efficient bulk heterojunction solar cells[J]. Org. Electron, 2014,15(11):2950-2958. doi: 10.1016/j.orgel.2014.08.026

    22. [22]

      Perepichka I. I., Perepichka I. F., Bryce M. R., Pålsson L.O.. Dibenzothiophene-S, S-dioxide-fluorene co-oligomers. Stable, highly-efficientblue emitters with improved electron affinity[J]. Chem. Commun., 2005:3397-3399.

    23. [23]

      Hsu C. Y., Hsieh M. T., Tsai M. K., Li Y. J., Huang C. J., Su Y. K., Whang T. J.. Fluorescent oligomers of dibenzothiophene-S, S-dioxide derivatives:the interplay of crystal conformations and photo-physical properties[J]. Tetrahedron, 2012,68(27-28):5481-5491. doi: 10.1016/j.tet.2012.04.085

    24. [24]

      Gsanger M., Oh J. H., Konemann M., Hoffken H. W., Krause A. M., Bao Z., Wurthner F. A.. Crystal-engineered hydrogen-bonded octachloroperylene diimide with a twisted core:an n-channel organic semiconductor[J]. Angew. Chem. Int. Ed., 2010,49(4):740-743. doi: 10.1002/anie.200904215

    25. [25]

      Jiu Y. D., Wang J. Y., Liu C. F., Lai W. Y., Zhao L. L., Li C. L., Jiang Y., Xu W. D., Zhang X. W., Huang W.. White electroluminescence with simultaneous three-color emission from a four-armed star-shaped single-polymer system[J]. Chin. J. Chem., 2015,33(8):873-880. doi: 10.1002/cjoc.v33.8

    26. [26]

      Jin F., Cai Z. B., Huang J. Q., Li S. L., Tian Y. P.. Investigation of two-photon absorption properties in new A-D-A compounds emitting blue and yellow fluorescence[J]. J. Mol. Struct., 2015,1093:33-38. doi: 10.1016/j.molstruc.2015.03.036

    27. [27]

      He R. F., Hu S. J., Liu J., Yu L., Zhang B., Li N., Yang W., Wu H. B., Peng J. B.. Bipolar blue-emitting poly(N-9'-heptadecanyl-carbazole-2, 7-diyl-co-dibenzo-thiophene-S, S-dio-xide-3, 7-diyl)s[J]. J. Mater. Chem., 2012,22(8):3440-3446. doi: 10.1039/c2jm14926e

    28. [28]

      Wang M., Li Y., Xie Z. Y., Wang L. X.. Polyfluorenes containing pyrazine units:Synthesis, photophysics and electroluminescence[J]. Sci. China Chem., 2011,54(4):656-665. doi: 10.1007/s11426-011-4238-6

    29. [29]

      Wang S. C., Xu S. S., Wang Y. M., Tian X. H., Zhang Y. J., Wang C. K., Wu J. Y., Yang J. X., Ti an, Y. P.. Synthesis, crystals of centrosymmetric triphenylamine chromophores bearing prodigious two-photon absorption cross-section and biological imaging[J]. Spectrochim. Acta A, 2017,173:871-879. doi: 10.1016/j.saa.2016.10.059

    30. [30]

      Makarov N. S., Drobizhev M., Rebane A.. Two-photon absorption standards in the 550-, 1600 nm excitation wavelength range[J]. Opt. Express, 2008,16(6):4029-4047. doi: 10.1364/OE.16.004029

    31. [31]

      Gao Y. T., Qu Y., Jiang T., Zhang H., He N. N., Li B., Wu J. C., Hua J. L.. Alkyl-triphenylamine end-capped triazines with AIE and large two-photon absorption cross-sections for bioimaging[J]. J. Mater. Chem. C, 2014,2(31):6353-6361. doi: 10.1039/C4TC00910J

    32. [32]

      Druzhinin S. K., Galievsky V. A., Demeter A., Kovalenko S. A., Senyushkina T., Dubbaka S. R., Knoche P., Mayer P., Grosse C., Stalke D.. Two-state intramolecular charge transfer (ICT) with 3, 5-dimethyl-4-(dimethylamino)-benzo-nitrile (MMD) and its meta-isomer mMMD. Ground state amino twist not essential for ICT[J]. J. Phys. Chem. A, 2015,119(48):11820-11836.  

    33. [33]

      Priya J., Samarendra P. S.. Dependence of the structure and electronic properties of D-A-D based molecules on the D/A ratio and the strength of the acceptor moiety[J]. J. Phys. Chem. C, 2015,119(27):14890-14899. doi: 10.1021/acs.jpcc.5b02404

    34. [34]

      Lan S. C., Raghunath P., Lu Y. H., Wang Y. C., Lin S. W., Liu C. M., Jiang J. M., Lin M. C., Wei K. H.. Symmetry and coplanarity of organic molecules affect their packing and photovoltaic properties in solution-processed solar cells[J]. ACS Appl. Mater. Interfaces, 2014,6(12):9298-9306. doi: 10.1021/am501659u

    35. [35]

      Li Q. Q., Zhong C., Huang J., Huang Z. L., Pei Z. G., Liu J., Qin J. G., Li Z.. Conjugated polymers with pyrrole as the conjugated bridge:synthesis, characterization, and two-photon absorption properties[J]. J. Phys. Chem. B, 2011,115(27):8679-8685. doi: 10.1021/jp2015484

    36. [36]

      Frisch, M. J. ; Trucks, G. W. ; Schlegel, H. B. ; Scuseria, G. E. ; Robb, M. A. ; Cheeseman, J. R. ; Scalmani, G. ; Barone, V. ; Mennucci, B. ; Petersson, G. A. ; Nakatsuji, H. ; Caricato, M. ; Li, X. ; Hratchian, H. P. ; Izmaylov, A. F. ; Bloino, J. ; Zheng, G. ; Sonnenberg, J. L. ; Hada, M. ; Ehara, M. ; Toyota, K. ; Fukuda, R. ; Hasegawa, J. ; Ishida, M. ; Nakajima, T. ; Honda, Y. ; Kitao, O. ; Nakai, H. ; Vreven, T. ; Montgomery, J. A. ; Peralta, J. E. ; Ogliaro, F. ; Bearpark, M. ; Heyd, J. J. ; Brothers, E. ; Kudin, K. N. ; Staroverov, V. N. ; Kobayashi, R. ; Normand, J. ; Raghavachari, K. ; Rendell, A. ; Burant, J. C. ; Iyengar, S. S. ; Tomasi, J. ; Cossi, M. ; Rega, N. ; Millam, J. M. ; Klene, M. ; Knox, J. E. ; Cross, J. B. ; Bakken, V. ; Adamo, C. ; Jaramillo, J. ; Gomperts, R. ; Stratmann, R. E. ; Yazyev, O. ; Austin, A. J. ; Cammi, R. ; Pomelli, C. ; Ochterski, J. W. ; Martin, R. L. ; Morokuma, K. ; Zakrzewski, V. G. ; Voth, G. A. ; Salvador, P. ; Dannenberg, J. J. ; Dapprich, S. ; Daniels, A. D. ; Farkas, Ö. ; Foresman, J. B. ; Ortiz, J. V. ; Cioslowski, J. ; Fox, D. J. Gaussian 09, Revision D. 01; Gaussian, Inc. : Wallingford, CT, 2009.

    37. [37]

      Hu L. W., Yang Y., Xu J., Liang J. F., Guo T., Zhang B., Yang W., Cao Y.. Blue light-emitting polymers containing fluorine based benzothiophene-S, S-dioxide derivatives J[J]. Mater. Chem. C, 2016,4(6):1305-1312. doi: 10.1039/C5TC03197D

  • 加载中
    1. [1]

      Yu YaoJinqiang ZhangYantao WangKunsheng HuYangyang YangZhongshuai ZhuShuang ZhongHuayang ZhangShaobin WangXiaoguang Duan . Nitrogen-rich carbon for catalytic activation of peroxymonosulfate towards green synthesis. Chinese Chemical Letters, 2024, 35(11): 109633-. doi: 10.1016/j.cclet.2024.109633

    2. [2]

      Jing-Jing ZhangLujun LouRui LvJiahui ChenYinlong LiGuangwei WuLingchao CaiSteven H. LiangZhen Chen . Recent advances in photochemistry for positron emission tomography imaging. Chinese Chemical Letters, 2024, 35(8): 109342-. doi: 10.1016/j.cclet.2023.109342

    3. [3]

      Rui ChengTingting ZhangXin HuangJian Yu . Facile synthesis of high-brightness green-emitting carbon dots with narrow bandwidth towards backlight display. Chinese Chemical Letters, 2024, 35(5): 108763-. doi: 10.1016/j.cclet.2023.108763

    4. [4]

      Guiyang ZhengXuelian KangHaoran YeWei FanChristian SonneSu Shiung LamRock Keey LiewChanglei XiaYang ShiShengbo Ge . Recent advances in functional utilisation of environmentally friendly and recyclable high-performance green biocomposites: A review. Chinese Chemical Letters, 2024, 35(4): 108817-. doi: 10.1016/j.cclet.2023.108817

    5. [5]

      Huihui LIUBaichuan ZHAOChuanhui WANGZhi WANGCongyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059

    6. [6]

      Zhefei HuJingwen LiaoJiawen ZhouLulu ZhaoYanjuan LiuYuefei ZhangWei ChenSheng Tang . A new green approach to synthesizing MIP-202@porous silica microspheres for positional isomer/enantiomer/hydrophilic separation. Chinese Chemical Letters, 2025, 36(1): 109985-. doi: 10.1016/j.cclet.2024.109985

    7. [7]

      Weidan MengYanbo ZhouYi Zhou . Green innovation unleashed: Harnessing tungsten-based nanomaterials for catalyzing solar-driven carbon dioxide conversion. Chinese Chemical Letters, 2025, 36(2): 109961-. doi: 10.1016/j.cclet.2024.109961

    8. [8]

      Kun Zhang Ni Dan Dan-Dan Ren Ruo-Yu Zhang Xiaoyan Lu Ya-Pan Wu Li-Lei Zhang Hong-Ru Fu Dong-Sheng Li . A small D-A molecule with highly heat-resisting room temperature phosphorescence for white emission and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(3): 100244-100244. doi: 10.1016/j.cjsc.2024.100244

    9. [9]

      Boran ChengLei CaoChen LiFang-Yi HuoQian-Fang MengGanglin TongXuan WuLin-Lin BuLang RaoShubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969

    10. [10]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    11. [11]

      Bohan ZhangBingzhe WangGuichuan XingZikang TangSongnan Qu . Regulation of the multi-emission centers in carbon dots via a bottom-up synthesis approach. Chinese Chemical Letters, 2024, 35(9): 109358-. doi: 10.1016/j.cclet.2023.109358

    12. [12]

      Xingwen Cheng Haoran Ren Jiangshan Luo . Boosting the self-trapped exciton emission in vacancy-ordered double perovskites via supramolecular assembly. Chinese Journal of Structural Chemistry, 2024, 43(6): 100306-100306. doi: 10.1016/j.cjsc.2024.100306

    13. [13]

      Yi LiuPeng LeiYang FengShiwei FuXiaoqing LiuSiqi ZhangBin TuChen ChenYifan LiLei WangQing-Dao Zeng . Topologically engineering of π-conjugated macrocycles: Tunable emission and photochemical reaction toward multi-cyclic polymers. Chinese Chemical Letters, 2024, 35(10): 109571-. doi: 10.1016/j.cclet.2024.109571

    14. [14]

      Shuo LiQianfa LiuLijun MaoXin ZhangChunju LiDa Ma . Benzothiadiazole-based water-soluble macrocycle: Synthesis, aggregation-induced emission and selective detection of spermine. Chinese Chemical Letters, 2024, 35(11): 109791-. doi: 10.1016/j.cclet.2024.109791

    15. [15]

      Yang LiYihan ChenJiaxin LuoQihuan LiYiwu QuanYixiang Cheng . Enhanced circularly polarized luminescence emission promoted by achiral dichroic oligomers of F8BT in cholesteric liquid crystal. Chinese Chemical Letters, 2024, 35(11): 109864-. doi: 10.1016/j.cclet.2024.109864

    16. [16]

      Liwen WangBoyang WangSiyu LuShubo LvXiaoli Qu . High quantum yield yellow emission carbon dots for the construction of blue light blocking films. Chinese Chemical Letters, 2025, 36(2): 110497-. doi: 10.1016/j.cclet.2024.110497

    17. [17]

      Pengfei LiChulin QuFan WuHu GaoChengyan ZhaoYue ZhaoZhen Shen . Robust free-base and metalated corrole radicals with reduction-induced emission. Chinese Chemical Letters, 2025, 36(2): 110292-. doi: 10.1016/j.cclet.2024.110292

    18. [18]

      Chun-Yun Ding Ru-Yuan Zhang Yu-Wu Zhong Jiannian Yao . Binary and heterostructured microplates of iridium and ruthenium complexes: Preparation, characterization, and thermo-responsive emission. Chinese Journal of Structural Chemistry, 2024, 43(10): 100393-100393. doi: 10.1016/j.cjsc.2024.100393

    19. [19]

      Jun-Yi Wang Jue-Yu Bao Zheng-Guang Wu Zheng-Yin Du Xunwen Xiao Xu-Feng Luo . Recent progress in steric modulation of MR-TADF materials and doping concentration independent OLEDs with narrowband emission. Chinese Journal of Structural Chemistry, 2025, 44(1): 100451-100451. doi: 10.1016/j.cjsc.2024.100451

    20. [20]

      Cheng HeRenlan HuangLingling WeiQiuhui HeJinbo LiuJiao ChenGe GaoCheng YangWanhua Wu . Uncovering the mask of sensitizers to switch on the TTA-UC emission by supramolecular host-guest complexation. Chinese Chemical Letters, 2025, 36(4): 110103-. doi: 10.1016/j.cclet.2024.110103

Metrics
  • PDF Downloads(0)
  • Abstract views(795)
  • HTML views(30)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return