Citation: Dan-Hua Zhou, Guan Zhang, Qing-Song Yu, Zhi-Hua Gan. Folic Acid Modified Polymeric Micelles for Intravesical Instilled Chemotherapy[J]. Chinese Journal of Polymer Science, ;2018, 36(4): 479-487. doi: 10.1007/s10118-018-2009-y shu

Folic Acid Modified Polymeric Micelles for Intravesical Instilled Chemotherapy

  • In this study, a targeting micellar drug delivery system was developed for intravesical instilled chemotherapy of bladder cancer. The amphiphilic diblock copolymer poly(ε-caprolactone)-block-poly(ethylene glycol) (PCL-b-PEO) with functional amino group (NH2) at the end of PEO block was synthesized. Then the copolymer was conjugated with folic acid (FA) and fluorescein isothiocyannate (FITC) via the PEO-NH2 terminus, and then assembled into micelles with the target moiety and fluorescence labeling. In addition, drug loaded micelles were also fabricated with anticancer drug doxorubicin (DOX) encapsulated in the hydrophobic core. The micelles were characterized in terms of size, drug loaded efficiency and critical micellization concentration (CMC) by means of DLS, UV and fluorescence spectra. In vitro cellular uptake and cytotoxicity studies showed that FA modified PCL-b-PEO-FA micelles have a greater targeting efficiency to human bladder cancer cell (T-24 cell) compared to PCL-b-PEO-NH2 micelles due to the conjugation of FA on the surface, while no targeting effect to normal tissue originated human embryonic kidney 293 (HEK-293) cells was observed, enabling the micelles a promising drug carrier for intravesical instilled chemotherapy of bladder cancer.
  • 加载中
    1. [1]

      Sun P., Zhou D., Gan Z.. Novel reduction-sensitive micelles for triggered intracellular drug release[J]. J. Control. Release, 2011,155(1):96-103. doi: 10.1016/j.jconrel.2010.11.005

    2. [2]

      Nie S., Xing Y., Kim G. J., Simons J. W.. Nanotechnology applications in cancer[J]. Annu. Rev. Biomed. Eng., 2007,9(1):257-288. doi: 10.1146/annurev.bioeng.9.060906.152025

    3. [3]

      GuhaSarkar S., Banerjee R.. Intravesical drug delivery:challenges, current status, opportunities and novel strategies[J]. J. Control. Release, 2010,148(2):147-159. doi: 10.1016/j.jconrel.2010.08.031

    4. [4]

      Shelley M. D., Mason M. D., Kynaston H.. Intravesical therapy for superficial bladder cancer:a systematic review of randomised trials and meta-analyses[J]. Cancer Treat. Rev., 2010,36(3):195-205. doi: 10.1016/j.ctrv.2009.12.005

    5. [5]

      Parkin D. M.. The global burden of urinary bladder cancer[J]. Scand. J. Urology Nephr., 2008,42:12-20.  

    6. [6]

      Ploeg M., Aben K. K. H., Kiemeney L. A.. The present and future burden of urinary bladder cancer in the world[J]. World J. Urology, 2009,27(3):289-293. doi: 10.1007/s00345-009-0383-3

    7. [7]

      Beardo V. P., Gamaza M. R., Gavira M. R.. Toxicity of intravesical gemcitabine in superficial bladder cancer treatment[J]. Farm Hosp, 2014,38(3):249-251.  

    8. [8]

      Rajala P., Liukkonen T., Raitanen M., Rintala E., Kaasinen E., Helle M., Lukkarinen O., Finnbladder G.. Transurethral resection with perioperative instillation of interferon-alpha or epirubicin for the prophylaxis of recurrent primary superficial bladder cancer:A prospective randomized multicenter study-finnbladder iii[J]. J. Urology, 1999,161(4):1133-1135. doi: 10.1016/S0022-5347(01)61609-4

    9. [9]

      Bellmunt J., Guix M.. New agents for bladder cancer[J]. Ann. Oncol., 2010,21:56-58.  

    10. [10]

      Li X., Qian Y., Liu T., Hu X., Zhang G., You Y., Liu S.. Amphiphilic multiarm star block copolymer-based multifunctional unimolecular micelles for cancer targeted drug delivery and mr imaging[J]. Biomaterials, 2011,32(27):6595-6605. doi: 10.1016/j.biomaterials.2011.05.049

    11. [11]

      Jagur-Grodzinski J.. Polymers for targeted and/or sustained drug delivery, Polym[J]. Adv. Technol.,, 2009,20(7):595-606. doi: 10.1002/pat.v20:7

    12. [12]

      Cho H. K., Cheong I. W., Lee J. M., Kim J. H.. Polymeric nanoparticles, micelles and polymersomes from amphiphilic block copolymer[J]. Korean J. Chem. Eng., 2010,27(3):731-740. doi: 10.1007/s11814-010-0216-5

    13. [13]

      Li X. R., Li P. Z., Zhang Y. H., Zhou Y. X., Chen X. W., Huang Y. Q., Liu Y.. Novel mixed polymeric micelles for enhancing delivery of anticancer drug and overcoming multidrug resistance in tumor cell lines simultaneously[J]. Pharm. Res., 2010,27(8):1498-1511. doi: 10.1007/s11095-010-0147-1

    14. [14]

      Bilensoy E., Sarisozen C., Esendagl I.G., Dogan A. L., Aktas Y., Sen M., Mungan N.A.. Intravesical cationic nanoparticles of chitosan and polycaprolactone for the delivery of mitomycin C to bladder tumors, Int[J]. J. Pharm.,, 2009,371(1-2):170-176.  

    15. [15]

      Kim S. W., Lee S. J., Cho Y. H., Yoon M. S., Lee C.H.. The anticancer efficacy and toxicity of oral paclitaxel-loaded lipid nanoparticle in a C3H2 bladder cancer mice[J]. Eur. Urology Suppl., 2005,4(3):84-84.  

    16. [16]

      Zhou D., Zhang G., Gan Z.. c(RGDfk) decorated micellar drug delivery system for intravesical instilled chemotherapy of superficial bladder cancer[J]. J. Control. Release, 2013,169(3):204-210. doi: 10.1016/j.jconrel.2013.01.025

    17. [17]

      Lu Y. J., Low P. S.. Folate-mediated delivery of macromolecular anticancer therapeutic agents[J]. Adv. Drug Deliv. Rev., 2002,54(5):675-693. doi: 10.1016/S0169-409X(02)00042-X

    18. [18]

      Ross J. F., Chaudhuri P. K., Ratnam M.. Differential regulation of folate receptor isoforms in normal and malignant-tissues in vivo and in established cell-lines-physiological and clinical implications[J]. Cancer, 1994,73(9):2432-2443. doi: 10.1002/(ISSN)1097-0142

    19. [19]

      Guo X., Shi C., Wang J., Di S., Zhou S.. pH-triggered intracellular release from actively targeting polymer micelles[J]. Biomaterials, 2013,34(18):4544-4554. doi: 10.1016/j.biomaterials.2013.02.071

    20. [20]

      Yoo H. S., Park T. G.. Folate receptor targeted biodegradable polymeric doxorubicin micelles[J]. J. Control. Release, 2004,96(2):273-283. doi: 10.1016/j.jconrel.2004.02.003

    21. [21]

      Shi C., Guo X., Qu Q., Tang Z., Wang Y., Zhou S.. Actively targeted delivery of anticancer drug to tumor cells by redox-responsive star-shaped micelles[J]. Biomaterials, 2014,35(30):8711-8722. doi: 10.1016/j.biomaterials.2014.06.036

    22. [22]

      Zhang Y., Sun P. J., Gan Z. H.. Biodegradable amphiphilic block copolymers containing functionalized peo blocks:Controlled synthesis and biomedical potentials[J]. Sci. Chi. Chem., 2010,53(3):519-527. doi: 10.1007/s11426-010-0095-y

    23. [23]

      Fernandes R. M. F., Marques E. F., Silva B. F. B., Wang Y. J.. Micellization behavior of a catanionic surfactant with high solubility mismatch composition, temperature, and salt effects, J[J]. Mol. Liq.,, 2010,157(2-3):113-118. doi: 10.1016/j.molliq.2010.08.014

    24. [24]

      Wei X., Gong C., Gou M., Fu S., Guo Q., Shi S., Luo F., Guo G., Qiu L., Qian Z.. Biodegradable poly(ε-caprolactone)-poly(ethylene glycol) copolymers as drug delivery system[J]. Int. J. Pharm., 2009,381(1):1-18. doi: 10.1016/j.ijpharm.2009.07.033

    25. [25]

      Yu G. Q., Zhang Y., Shi X. D., Li Z. S., Gan Z. H.. Surface property and in vitro biodegradation of microspheres fabricated by poly(ε-caprolactone-b-ethylene oxide) diblock copolymers[J]. J. Biomed. Mater. Res. Part A, 2008,84A(4):926-939. doi: 10.1002/(ISSN)1552-4965

    26. [26]

      Lu T. C., Sun J., Chen X. X., Zhang P. B., Jing X. B.. Folate-conjugated micelles and their folate-receptor-mediated endocytosis[J]. Macromol. Biosci., 2009,9(11):1059-1068. doi: 10.1002/mabi.v9:11

    27. [27]

      Cho H. K., Lone S., Kim D. D., Choi J. H., Choi S. W., Cho J. H., Kim J. H., Cheong I. W.. Synthesis and characterization of fluorescein isothiocyanate (FITC)-labeled PEO-PCL-PEO triblock copolymers for topical delivery[J]. Polymer, 2009,50(11):2357-2364. doi: 10.1016/j.polymer.2009.03.032

    28. [28]

      Liu Y. T., Li K., Pan J., Liu B., Feng S. S.. Folic acid conjugated nanoparticles of mixed lipid monolayer shell and biodegradable polymer core for targeted delivery of docetaxel[J]. Biomaterials, 2010,31(2):330-338. doi: 10.1016/j.biomaterials.2009.09.036

    29. [29]

      Prabaharan M., Grailer J. J., Pilla S., Steeber D. A., Gong S.. Amphiphilic multi-arm-block copolymer conjugated with doxorubicin via pH-sensitive hydrazone bond for tumor-targeted drug delivery[J]. Biomaterials, 2009,30(29):5757-5766. doi: 10.1016/j.biomaterials.2009.07.020

    30. [30]

      Seow W. Y., Xue J. M., Yang Y. Y.. Targeted and intracellular delivery of Paclitaxel using multi-functional polymeric micelles[J]. Biomaterials, 2007,28(9):1730-40. doi: 10.1016/j.biomaterials.2006.11.039

  • 加载中
    1. [1]

      Xiying WuAnze LiuYuzhong YanYing LuHuan Wang . Folic acid ameliorates the immunogenicity of PEGylated liposomes. Chinese Chemical Letters, 2025, 36(6): 110285-. doi: 10.1016/j.cclet.2024.110285

    2. [2]

      Ruifeng LiangYanbei TuPeng HuaYongzhuo HuangMeiwan Chen . ROS-responsive micelles co-loaded dexamethasone and pristimerin to restore the homeostasis of the inflammatory microenvironment for rheumatoid arthritis therapy. Chinese Chemical Letters, 2025, 36(6): 110335-. doi: 10.1016/j.cclet.2024.110335

    3. [3]

      Yihan ZhouDuo GaoYaying WangLi LiangQingyu ZhangWenwen HanJie WangChunliu ZhuXinxin ZhangYong Gan . Worm-like micelles facilitate the intestinal mucus diffusion and drug accumulation for enhancing colorectal cancer therapy. Chinese Chemical Letters, 2024, 35(6): 108967-. doi: 10.1016/j.cclet.2023.108967

    4. [4]

      Li FuZiye SuShuyang WuYanfen ChengChuan HuJinming Zhang . Redox-responsive hyaluronic acid-celastrol prodrug micelles with glycyrrhetinic acid co-delivery for tumor combination therapy. Chinese Chemical Letters, 2025, 36(5): 110227-. doi: 10.1016/j.cclet.2024.110227

    5. [5]

      Yixin SunKeke YuXiuchun GuoLanlan ZongZhonggui HeXiaohui Pu . Three-in-one reduction and acid-ignited micelles amplify antitumor efficacy via precise synergistic delivery of paclitaxel and naringenin. Chinese Chemical Letters, 2025, 36(6): 110393-. doi: 10.1016/j.cclet.2024.110393

    6. [6]

      Xiangqian CaoChenkai YangXiaodong ZhuMengxin ZhaoYilin YanZhengnan HuangJinming CaiJingming ZhuangShengzhou LiWei LiBing Shen . Synergistic enhancement of chemotherapy for bladder cancer by photothermal dual-sensitive nanosystem with gold nanoparticles and PNIPAM. Chinese Chemical Letters, 2024, 35(8): 109199-. doi: 10.1016/j.cclet.2023.109199

    7. [7]

      Mengjuan SunMuye ZhouYifang XiaoHailei TangJinhua ChenRuitao ZhangChunjiayu LiQi YaQian ChenJiasheng TuQiyue WangChunmeng Sun . Reversibly size-switchable polyion complex micelles for antiangiogenic cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109110-. doi: 10.1016/j.cclet.2023.109110

    8. [8]

      Qiuyu Ming Huijun Jiang Zhihao Zhang . A Sightseeing Tour of Folic Acid Processing Plant. University Chemistry, 2024, 39(9): 11-15. doi: 10.12461/PKU.DXHX202404092

    9. [9]

      Zhifeng CAIYing WUYanan LIGuiyu MENGTianyu MIAOYihao ZHANG . Effective detection of malachite green by folic acid stabilized silver nanoclusters. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 983-993. doi: 10.11862/CJIC.20240394

    10. [10]

      Linghui ZouMeng ChengKaili HuJianfang FengLiangxing Tu . Vesicular drug delivery systems for oral absorption enhancement. Chinese Chemical Letters, 2024, 35(7): 109129-. doi: 10.1016/j.cclet.2023.109129

    11. [11]

      Fengjie LiuFansu MengZhenjiang YangHuan WangYuehong RenYu CaiXingwang Zhang . Exosome-biomimetic nanocarriers for oral drug delivery. Chinese Chemical Letters, 2024, 35(9): 109335-. doi: 10.1016/j.cclet.2023.109335

    12. [12]

      Weijian ZhangXianyu DengLiying WangJian WangXiuting GuoLianggui HuangXinyi WangJun WuLinjia Jiang . Poly(ferulic acid) nanocarrier enhances chemotherapy sensitivity of acute myeloid leukemia by selectively targeting inflammatory macrophages. Chinese Chemical Letters, 2024, 35(9): 109422-. doi: 10.1016/j.cclet.2023.109422

    13. [13]

      Cheng-Zhe GaoHao-Ran JiaTian-Yu WangXiao-Yu ZhuXiaofeng HanFu-Gen Wu . A dual drug-loaded tumor vasculature-targeting liposome for tumor vasculature disruption and hypoxia-enhanced chemotherapy. Chinese Chemical Letters, 2025, 36(1): 109840-. doi: 10.1016/j.cclet.2024.109840

    14. [14]

      Tong ZhangChao SunShubin YangZimin CaiSifeng ZhuWendian LiuYun LuanCheng Wang . Inhalation of taraxasterol loaded mixed micelles for the treatment of idiopathic pulmonary fibrosis. Chinese Chemical Letters, 2024, 35(8): 109248-. doi: 10.1016/j.cclet.2023.109248

    15. [15]

      Yujie LiYa-Nan WangYin-Gen LuoHongcai YangJinrui RenXiao Li . Advances in synthetic biology-based drug delivery systems for disease treatment. Chinese Chemical Letters, 2024, 35(11): 109576-. doi: 10.1016/j.cclet.2024.109576

    16. [16]

      Lin LiBingjun SunJin SunLin ChenZhonggui He . Binary prodrug nanoassemblies combining chemotherapy and ferroptosis activation for efficient triple-negative breast cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109538-. doi: 10.1016/j.cclet.2024.109538

    17. [17]

      Yiqiao ChenAo LiuBiwen YangZhenzhen LiBinggang YeZhouyi GuoZhiming LiuHaolin Chen . Photoluminescence and photothermal conversion in boric acid derived carbon dots for targeted microbial theranostics. Chinese Chemical Letters, 2024, 35(9): 109295-. doi: 10.1016/j.cclet.2023.109295

    18. [18]

      Dexuan XiaoTianyu ChenTianxu ZhangSirong ShiMei ZhangXin QinYunkun LiuLongjiang LiYunfeng Lin . Transdermal treatment for malignant melanoma by aptamer-modified tetrahedral framework nucleic acid delivery of vemurafenib. Chinese Chemical Letters, 2024, 35(4): 108602-. doi: 10.1016/j.cclet.2023.108602

    19. [19]

      Yu QinMingyang HuangChenlu HuangHannah L. PerryLinhua ZhangDunwan Zhu . O2-generating multifunctional polymeric micelles for highly efficient and selective photodynamic-photothermal therapy in melanoma. Chinese Chemical Letters, 2024, 35(7): 109171-. doi: 10.1016/j.cclet.2023.109171

    20. [20]

      Hongyi HuangSiyao CheWenjie ZhouYunchu ZhangWeiling ZhuoXijing YangSongping ZhengJiagang LiuXiang Gao . Apatinib potentiates doxorubicin with cRGD-functionalized pH-sensitive micelles against glioma. Chinese Chemical Letters, 2025, 36(5): 110084-. doi: 10.1016/j.cclet.2024.110084

Metrics
  • PDF Downloads(0)
  • Abstract views(1003)
  • HTML views(44)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return