Citation: Hao Su, Yuzhu Wang, Caleb F. Anderson, Jin Mo Koo, Han Wang, Honggang Cui. Recent Progress in Exploiting Small Molecule Peptides as Supramolecular Hydrogelators[J]. Chinese Journal of Polymer Science, ;2017, 35(10): 1194-1211. doi: 10.1007/s10118-017-1998-2 shu

Recent Progress in Exploiting Small Molecule Peptides as Supramolecular Hydrogelators

  • Corresponding author: Honggang Cui, hcui6@jhu.edu
  • Received Date: 28 May 2017
    Revised Date: 20 June 2017
    Accepted Date: 21 June 2017

    Fund Project: the National Science Foundation DMR 1255281

  • Small molecule peptides and their derivatives are an emerging class of supramolecular hydrogelators that have attracted rapidly growing interest in the fields of drug delivery and regenerative medicine due to their inherent biodegradability and biocompatibility, as well as versatility in molecular design and ease of synthesis. Built upon the directional, intermolecular interactions such as hydrogen bonding and π-π stacking, peptide-based molecular units can associate in aqueous solution into filamentous assemblies of various sizes and shapes. Under appropriate conditions, these filamentous assemblies can percolate into a 3D network with materials properties tailorable for specific biomedical applications. In this review, we survey the literature published over the past three years in the development of peptide-based hydrogelators for biomedical applications. We highlight several representative examples and center our discussion on the fundamentals of molecular design, assembly, and gelation conditions.
  • 加载中
    1. [1]

      Appel, E.A., del Barrio, J., Loh, X.J. and Scherman, O.A., Chem. Soc. Rev., 2012, 41(18):6195  doi: 10.1039/c2cs35264h

    2. [2]

      Du, X.W., Zhou, J., Shi, J.F. and Xu, B., Chem. Rev., 2015, 115(24):13165  doi: 10.1021/acs.chemrev.5b00299

    3. [3]

      Hoffman, A.S., Adv. Drug Deliver. Rev., 2012, 64:18  doi: 10.1016/j.addr.2012.09.010

    4. [4]

      Lau, H.K. and Kiick, K.L., Biomacromolecules, 2015, 16(1):28  doi: 10.1021/bm501361c

    5. [5]

      Eslahi, N., Abdorahim, M. and Simchi, A., Biomacromolecules, 2016, 17(11):3441  doi: 10.1021/acs.biomac.6b01235

    6. [6]

      Drury, J.L. and Mooney, D.J., Biomaterials, 2003, 24(24):4337  doi: 10.1016/S0142-9612(03)00340-5

    7. [7]

      Lee, K.Y. and Mooney, D.J., Chem. Rev., 2001, 101(7):1869  doi: 10.1021/cr000108x

    8. [8]

      Jabbari, E., Leijten, J., Xu, Q.B. and Khademhosseini, A., Mater. Today, 2016, 19(4):190  doi: 10.1016/j.mattod.2015.10.005

    9. [9]

      Vega, S.L., Kwon, M.Y. and Burdick, J.A., Eur. Cells. Mater., 2017, 33:59  doi: 10.22203/eCM

    10. [10]

      Annabi, N., Tamayol, A., Uquillas, J.A., Akbari, M., Bertassoni, L.E., Cha, C., Camci-Unal, G., Dokmeci, M.R., Peppas, N.A. and Khademhosseini, A., Adv. Mater., 2014, 26(1):85  doi: 10.1002/adma.201303233

    11. [11]

      Holmes, R.A., Yang, X., Tronci, G. and Wood, D., Tissue Eng. Pt. A, 2016, 22:S126

    12. [12]

      Slaughter, B.V., Khurshid, S.S., Fisher, O.Z., Khademhosseini, A. and Peppas, N.A., Adv. Mater., 2009, 21(32-33):3307  doi: 10.1002/adma.v21:32/33

    13. [13]

      Yang, J.A., Yeom, J., Hwang, B.W., Hoffman, A.S. and Hahn, S.K., Prog. Polym. Sci., 2014, 39(12):1973  doi: 10.1016/j.progpolymsci.2014.07.006

    14. [14]

      Singh, A. and Peppas, N.A., Adv. Mater., 2014, 26(38):6530  doi: 10.1002/adma.v26.38

    15. [15]

      Wen, Y., Waltman, A., Han, H.F. and Collier, J.H., ACS Nano, 2016, 10(10):9274  doi: 10.1021/acsnano.6b03409

    16. [16]

      Rudra, J.S., Sun, T., Bird, K.C., Daniels, M.D., Gasiorowski, J.Z., Chong, A.S. and Collier, J.H., ACS Nano, 2012, 6(2):1557  doi: 10.1021/nn204530r

    17. [17]

      Barrett, J.C., Ulery, B.D., Trent, A., Liang, S., David, N.A. and Tirrell, M.V., ACS. Biomater. Sci. Eng., 2017, 3(2):144  doi: 10.1021/acsbiomaterials.6b00422

    18. [18]

      Vashist, A., Vashist, A., Gupta, Y.K. and Ahmad, S., J. Mater. Chem. B, 2014, 2(2):147  doi: 10.1039/C3TB21016B

    19. [19]

      Hoare, T.R. and Kohane, D.S., Polymer, 2008, 49(8):1993  doi: 10.1016/j.polymer.2008.01.027

    20. [20]

      Ashley, G.W., Henise, J., Reid, R. and Santi, D.V., Proc. Natl. Acad. Sci. U.S.A., 2013, 110(6):2318  doi: 10.1073/pnas.1215498110

    21. [21]

      Singh, N.K. and Lee, D.S., J. Control. Release, 2014, 193:214  doi: 10.1016/j.jconrel.2014.04.056

    22. [22]

      Zhang, Y.F., Wang, R., Hua, Y.Y., Baumgartner, R. and Cheng, J.J., ACS Macro Lett., 2014, 3(7):693  doi: 10.1021/mz500277j

    23. [23]

      Purcell, B.P., Lobb, D., Charati, M.B., Dorsey, S.M., Wade, R.J., Zellars, K.N., Doviak, H., Pettaway, S., Logdon, C.B., Shuman, J.A., Freels, P.D., Gorman, J.H., Gorman, R.C., Spinale, F.G. and Burdick, J.A., Nat. Mater., 2014, 13(6):653  doi: 10.1038/nmat3922

    24. [24]

      Hartlieb, M., Kempe, K. and Schubert, U.S., J. Mater. Chem. B, 2015, 3(4):526  doi: 10.1039/C4TB01660B

    25. [25]

      Nguyen, Q.V., Huynh, D.P., Park, J.H. and Lee, D.S., Eur. Polym. J., 2015, 72:602  doi: 10.1016/j.eurpolymj.2015.03.016

    26. [26]

      Wu, X.L., He, C.L., Wu, Y.D., Chen, X.S. and Cheng, J.J., Adv. Funct. Mater., 2015, 25(43):6744  doi: 10.1002/adfm.201502742

    27. [27]

      Fu, X.H., Shen, Y., Ma, Y.A., Fu, W.X. and Li, Z.B., Sci. China-Chem., 2015, 58(6):1005  doi: 10.1007/s11426-014-5297-2

    28. [28]

      Ma, Y.N., Fu, X.H., Shen, Y., Fu, W.X. and Li, Z.B., Macromolecules, 2014, 47(14):4684  doi: 10.1021/ma501104s

    29. [29]

      Zhang, S.S., Fu, W.X. and Li, Z.B., Polym. Chem., 2014, 5(10):3346  doi: 10.1039/C4PY00016A

    30. [30]

      Srivastava, S., Andreev, M., Levi, A.E., Goldfeld, D.J., Mao, J., Heller, W.T., Prabhu, V.M., de Pablo, J.J. and Tirrell, M.V., Nat. Commun., 2017, 8:14131  doi: 10.1038/ncomms14131

    31. [31]

      Whittaker, J., Balu, R., Choudhury, N.R. and Dutta, N.K., Polym. Int., 2014, 63(9):1545  doi: 10.1002/pi.2014.63.issue-9

    32. [32]

      Zhao, Y., Nakajima, T., Yang, J.J., Kurokawa, T., Liu, J., Lu, J., Mizumoto, S., Sugahara, K., Kitamura, N., Yasuda, K., Daniels, A.U.D. and Gong, J.P., Adv. Mater., 2014, 26(3):436  doi: 10.1002/adma.201303387

    33. [33]

      Li, J., Mo, L.T., Lu, C.H., Fu, T., Yang, H.H. and Tan, W.H., Chem. Soc. Rev., 2016, 45(5):1410  doi: 10.1039/C5CS00586H

    34. [34]

      Um, S.H., Lee, J.B., Park, N., Kwon, S.Y., Umbach, C.C. and Luo, D., Nat. Mater., 2006, 5(10):797  doi: 10.1038/nmat1741

    35. [35]

      Xiong, X.L., Wu, C.C., Zhou, C.S., Zhu, G.Z., Chen, Z. and Tan, W.H., Macromol. Rapid Commun., 2013, 34(16):1271  doi: 10.1002/marc.v34.16

    36. [36]

      Kahn, J.S., Hu, Y.W. and Willner, I., Accounts Chem. Res., 2017, 50(4):680  doi: 10.1021/acs.accounts.6b00542

    37. [37]

      Singh, N., Kumar, M., Miravet, J.F., Ulijn, R.V. and Escuder, B., Chem. Eur. J., 2017, 23(5):981  doi: 10.1002/chem.201602624

    38. [38]

      Cui, H., Webber, M.J. and Stupp, S.I., Biopolymers, 2010, 94(1):1  doi: 10.1002/bip.21328

    39. [39]

      Zhou, J., Li, J., Du, X.W. and Xu, B., Biomaterials, 2017, 129:1  doi: 10.1016/j.biomaterials.2017.03.014

    40. [40]

      Jonker, A.M., Lowik, D.W.P.M. and van Hest, J.C.M., Chem. Mater., 2012, 24(5):759  doi: 10.1021/cm202640w

    41. [41]

      Sathaye, S., Mbi, A., Sonmez, C., Chen, Y.C., Blair, D.L., Schneider, J.P. and Pochan, D.J., Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2015, 7(1):34  doi: 10.1002/wnan.2015.7.issue-1

    42. [42]

      Altunbas, A. and Pochan, D.J., Top. Curr. Chem., 2012, 310:135

    43. [43]

      Li, I.C., Moore, A.N. and Hartgerink, J.D., Biomacromolecules, 2016, 17(6):2087  doi: 10.1021/acs.biomac.6b00309

    44. [44]

      Suh, J.K.F. and Matthew, H.W.T., Biomaterials, 2000, 21(24):2589  doi: 10.1016/S0142-9612(00)00126-5

    45. [45]

      van Vlierberghe, S., Dubruel, P. and Schacht, E., Biomacromolecules, 2011, 12(5):1387  doi: 10.1021/bm200083n

    46. [46]

      Shen, X.P., Shamshina, J.L., Berton, P., Gurau, G. and Rogers, R.D., Green. Chem., 2016, 18(1):53  doi: 10.1039/C5GC02396C

    47. [47]

      Zhang, X.L., Dong, C.M., Huang, W.Y., Wang, H.M., Wang, L., Ding, D., Zhou, H., Long, J.F., Wang, T.L. and Yang, Z.M., Nanoscale, 2015, 7(40):16666  doi: 10.1039/C5NR05213K

    48. [48]

      Patenaude, M., Smeets, N.M.B. and Hoare, T., Macromol. Rapid Commun., 2014, 35(6):598  doi: 10.1002/marc.v35.6

    49. [49]

      Hennink, W.E. and van Nostrum, C.F., Adv. Drug Deliver. Rev., 2012, 64:223  doi: 10.1016/j.addr.2012.09.009

    50. [50]

      Konieczynska, M.D. and Grinstaff, M.W., Accounts Chem. Res., 2017, 50(2):151  doi: 10.1021/acs.accounts.6b00547

    51. [51]

      Holloway, J.L., Ma, H., Rai, R., Hankenson, K.D. and Burdick, J.A., Macromol. Biosci., 2015, 15(9):1218  doi: 10.1002/mabi.201500178

    52. [52]

      Khetan, S., Guvendiren, M., Legant, W.R., Cohen, D.M., Chen, C.S. and Burdick, J.A., Nat. Mater., 2013, 12(5):458  doi: 10.1038/nmat3586

    53. [53]

      Rodell, C.B., Wade, R.J., Purcell, B.P., Dusaj, N.N. and Burdick, J.A., ACS. Biomater. Sci. Eng., 2015, 1(4):277  doi: 10.1021/ab5001673

    54. [54]

      Wade, R.J., Bassin, E.J., Rodell, C.B. and Burdick, J.A., Nat. Commun., 2015, 6:6639  doi: 10.1038/ncomms7639

    55. [55]

      Kloxin, A.M., Kasko, A.M., Salinas, C.N. and Anseth, K.S., Science, 2009, 324(5923):59  doi: 10.1126/science.1169494

    56. [56]

      Brown, T.E., Marozas, I.A. and Anseth, K.S., Adv. Mater., 2017, 29(11):1605001  doi: 10.1002/adma.201605001

    57. [57]

      Grim, J.C., Marozas, I.A. and Anseth, K.S., J. Control. Release, 2015, 219:95  doi: 10.1016/j.jconrel.2015.08.040

    58. [58]

      McKinnon, D.D., Brown, T.E., Kyburz, K.A., Kiyotake, E. and Anseth, K.S., Biomacromolecules, 2014, 15(7):2808  doi: 10.1021/bm500731b

    59. [59]

      Rosales, A.M. and Anseth, K.S., Nat. Rev. Mater., 2016, 1(2):15012  doi: 10.1038/natrevmats.2015.12

    60. [60]

      Sridhar, B.V., Brock, J.L., Silver, J.S., Leight, J.L., Randolph, M.A. and Anseth, K.S., Adv. Healthc. Mater., 2015, 4(5):702  doi: 10.1002/adhm.v4.5

    61. [61]

      Webber, M.J., Appel, E.A., Meijer, E.W. and Langer, R., Nat. Mater., 2016, 15(1):13

    62. [62]

      Sun, J.E.P., Stewart, B., Litan, A., Lee, S.J., Schneider, J.P., Langhans, S.A. and Pochan, D.J., Biomater. Sci., 2016, 4(5):839  doi: 10.1039/C5BM00538H

    63. [63]

      Dong, R.J., Pang, Y., Su, Y. and Zhu, X.Y., Biomater. Sci., 2015, 3(7):937  doi: 10.1039/C4BM00448E

    64. [64]

      Zhao, F., Ma, M.L. and Xu, B., Chem. Soc. Rev., 2009, 38(4):883  doi: 10.1039/b806410p

    65. [65]

      Aida, T., Meijer, E.W. and Stupp, S.I., Science, 2012, 335(6070):813  doi: 10.1126/science.1205962

    66. [66]

      Voorhaar, L. and Hoogenboom, R., Chem. Soc. Rev., 2016, 45(14):4013  doi: 10.1039/C6CS00130K

    67. [67]

      Seiffert, S. and Sprakel, J., Chem. Soc. Rev., 2012, 41(2):909  doi: 10.1039/C1CS15191F

    68. [68]

      Rodell, C.B., Kaminski, A.L. and Burdick, J.A., Biomacromolecules, 2013, 14(11):4125  doi: 10.1021/bm401280z

    69. [69]

      Kakuta, T., Takashima, Y., Nakahata, M., Otsubo, M., Yamaguchi, H. and Harada, A., Adv. Mater., 2013, 25(20):2849  doi: 10.1002/adma.201205321

    70. [70]

      Yang, Z.M., Gu, H.W., Fu, D.G., Gao, P., Lam, J.K. and Xu, B., Adv. Mater., 2004, 16(16):1440  doi: 10.1002/(ISSN)1521-4095

    71. [71]

      Appel, E.A., Tibbitt, M.W., Webber, M.J., Mattix, B.A., Veiseh, O. and Langer, R., Nat. Commun., 2015, 6:7295  doi: 10.1038/ncomms8295

    72. [72]

      Lock, L.L., Li, Y., Mao, X., Chen, H., Staedtke, V., Bai, R., Ma, W., Lin, R., Li, Y., Liu, G. and Cui, H., ACS Nano, 2017, 11(1):797  doi: 10.1021/acsnano.6b07196

    73. [73]

      Hu, Y., Lin, R., Patel, K., Cheetham, A.G., Kan, C. and Cui, H., Coordin. Chem. Rev., 2016, 320:2

    74. [74]

      Wang, Z., Li, Y.W., Huang, Y.R., Thompson, M.P., LeGuyader, C.L.M., Sahu, S. and Gianneschi, N.C., Chem. Commun., 2015, 51(96):17108  doi: 10.1039/C5CC05653E

    75. [75]

      Anderson, C.F. and Cui, H., Ind. Eng. Chem. Res., 2017, 56(20):5761  doi: 10.1021/acs.iecr.7b00990

    76. [76]

      Lin, Y.A., Ou, Y.C., Cheetham, A.G. and Cui, H., ACS Macro Lett., 2013, 2(12):1088  doi: 10.1021/mz400535g

    77. [77]

      Lin, Y.A., Ou, Y.C., Cheetham, A.G. and Cui, H., Biomacromolecules, 2014, 15(4):1419  doi: 10.1021/bm500020j

    78. [78]

      Lock, L.L., Reyes, C.D., Zhang, P. and Cui, H., J. Am. Chem. Soc., 2016, 138(10):3533  doi: 10.1021/jacs.6b00073

    79. [79]

      Zhang, P.C., Cheetham, A.G., Lin, Y.A. and Cui, H., ACS Nano, 2013, 7(7):5965  doi: 10.1021/nn401667z

    80. [80]

      Carter, J.M., Qian, Y., Foster, J.C. and Matson, J.B., Chem. Commun., 2015, 51(66):13131  doi: 10.1039/C5CC04883D

    81. [81]

      Mart, R.J., Osborne, R.D., Stevens, M.M. and Ulijn, R.V., Soft Matter, 2006, 2(10):822  doi: 10.1039/b607706d

    82. [82]

      Wong, S., Shim, M.S. and Kwon, Y.J., J. Mater. Chem. B, 2014, 2(6):595  doi: 10.1039/C3TB21344G

    83. [83]

      Choe, S., Bond, C.W., Harrington, D.A., Stupp, S.I., McVary, K.T. and Podlasek, C.A., Nanomed. Nanotechnol. Biol. Med., 2017, 13(1):95  doi: 10.1016/j.nano.2016.08.032

    84. [84]

      Fichman, G. and Gazit, E., Acta Biomater., 2014, 10(4):1671  doi: 10.1016/j.actbio.2013.08.013

    85. [85]

      Yu, Z.Q., Xu, Q., Dong, C.B., Lee, S.S., Gao, L.Q., Li, Y.W., D'Ortenzio, M. and Wu, J., Curr. Pharm. Design., 2015, 21(29):4342  doi: 10.2174/1381612821666150901104821

    86. [86]

      Qian, Y. and Matson, J.B., Adv. Drug Deliver. Rev., 2017, 110-111:137  doi: 10.1016/j.addr.2016.06.017

    87. [87]

      Worthington, P., Langhans, S. and Pochan, D., Adv. Drug Deliver. Rev., 2017, 110-111:127  doi: 10.1016/j.addr.2017.02.002

    88. [88]

      Moore, A.N. and Hartgerink, J.D., Accounts Chem. Res., 2017, 50(4):714  doi: 10.1021/acs.accounts.6b00553

    89. [89]

      Berns, E.J., Sur, S., Pan, L.L., Goldberger, J.E., Suresh, S., Zhang, S.M., Kessler, J.A. and Stupp, S.I., Biomaterials, 2014, 35(1):185  doi: 10.1016/j.biomaterials.2013.09.077

    90. [90]

      Choe, S., Veliceasa, D., Bond, C.W., Harrington, D.A., Stupp, S.I., McVary, K.T. and Podlasek, C.A., Acta Biomater., 2016, 32:89  doi: 10.1016/j.actbio.2016.01.014

    91. [91]

      Acar, H., Srivastava, S., Chung, E.J., Schnorenberg, M.R., Barrett, J.C., LaBelle, J.L. and Tirrell, M., Adv. Drug Deliver. Rev., 2017, 110-111:65  doi: 10.1016/j.addr.2016.08.006

    92. [92]

      Fleming, S. and Ulijn, R.V., Chem. Soc. Rev., 2014, 43(23):8150  doi: 10.1039/C4CS00247D

    93. [93]

      Raeburn, J. and Adams, D.J., Chem. Commun., 2015, 51(25):5170  doi: 10.1039/C4CC08626K

    94. [94]

      Su, H., Koo, J.M. and Cui, H., J. Control. Release, 2015, 219:383  doi: 10.1016/j.jconrel.2015.09.056

    95. [95]

      Wang, Y., Cheetham, A.G., Angacian, G., Su, H., Xie, L. and Cui, H., Adv. Drug Deliver. Rev., 2017, 110-111:112  doi: 10.1016/j.addr.2016.06.015

    96. [96]

      Chakroun, R.W., Zhang, P., Lin, R., Schiapparelli, P., Quinones-Hinojosa, A. and Cui, H., Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2017, DOI:10.1002/wnan.1479  doi: 10.1002/wnan.1479

    97. [97]

      Lock, L.L., LaComb, M., Schwarz, K., Cheetham, A.G., Lin, Y.A., Zhang, P. and Cui, H., Faraday Discuss., 2013, 166:285  doi: 10.1039/c3fd00099k

    98. [98]

      Lin, R., Zhang, P., Cheetham, A.G., Walston, J., Abadir, P. and Cui, H., Bioconjug. Chem., 2015, 26(1):71  doi: 10.1021/bc500408p

    99. [99]

      Lock, L.L., Tang, Z., Keith, D., Reyes, C. and Cui, H., ACS Macro Lett., 2015, 4(5):552  doi: 10.1021/acsmacrolett.5b00170

    100. [100]

      Zhang, P., Lock, L.L., Cheetham, A.G. and Cui, H., Mol. Pharm., 2014, 11(3):964  doi: 10.1021/mp400619v

    101. [101]

      Lampel, A., McPhee, S.A., Park, H.A., Scott, G.G., Humagain, S., Hekstra, D.R., Yoo, B., Frederix, P., Li, T.D., Abzalimov, R.R., Greenbaum, S.G., Tuttle, T., Hu, C., Bettinger, C.J. and Ulijn, R.V., Science, 2017, 356(6342):1064  doi: 10.1126/science.aal5005

    102. [102]

      Hauser, C.A.E. and Zhang, S.G., Chem. Soc. Rev., 2010, 39(8):2780  doi: 10.1039/b921448h

    103. [103]

      Zhao, X.B., Pan, F., Xu, H., Yaseen, M., Shan, H.H., Hauser, C.A.E., Zhang, S.G. and Lu, J.R., Chem. Soc. Rev., 2010, 39(9):3480  doi: 10.1039/b915923c

    104. [104]

      Holmes, T.C., de Lacalle, S., Su, X., Liu, G.S., Rich, A. and Zhang, S.G., Proc. Natl. Acad. Sci. U.S.A., 2000, 97(12):6728  doi: 10.1073/pnas.97.12.6728

    105. [105]

      Nagai, Y., Unsworth, L.D., Koutsopoulos, S. and Zhang, S.G., J. Control. Release, 2006, 115(1):18  doi: 10.1016/j.jconrel.2006.06.031

    106. [106]

      Koutsopoulos, S., Unsworth, L.D., Nagai, Y. and Zhang, S.G., Proc. Natl. Acad. Sci. U.S.A., 2009, 106(12):4623  doi: 10.1073/pnas.0807506106

    107. [107]

      Koutsopoulos, S. and Zhang, S.G., J. Control. Release, 2012, 160(3):451  doi: 10.1016/j.jconrel.2012.03.014

    108. [108]

      Altunbas, A., Lee, S.J., Rajasekaran, S.A., Schneider, J.P. and Pochan, D.J., Biomaterials, 2011, 32(25):5906  doi: 10.1016/j.biomaterials.2011.04.069

    109. [109]

      Branco, M.C., Pochan, D.J., Wagner, N.J. and Schneider, J.P., Biomaterials, 2009, 30(7):1339  doi: 10.1016/j.biomaterials.2008.11.019

    110. [110]

      Haines-Butterick, L., Rajagopal, K., Branco, M., Salick, D., Rughani, R., Pilarz, M., Lamm, M.S., Pochan, D.J. and Schneider, J.P., Proc. Natl. Acad. Sci. U.S.A., 2007, 104(19):7791  doi: 10.1073/pnas.0701980104

    111. [111]

      Rughani, R.V., Branco, M.C., Pochan, D. and Schneider, J.P., Macromolecules, 2010, 43(19):7924  doi: 10.1021/ma1014808

    112. [112]

      Bakota, E.L., Wang, Y., Danesh, F.R. and Hartgerink, J.D., Biomacromolecules, 2011, 12(5):1651  doi: 10.1021/bm200035r

    113. [113]

      Fallas, J.A., O'Leary, L.E.R. and Hartgerink, J.D., Chem. Soc. Rev., 2010, 39(9):3510  doi: 10.1039/b919455j

    114. [114]

      O'Leary, L.E.R., Fallas, J.A., Bakota, E.L., Kang, M.K. and Hartgerink, J.D., Nat. Chem., 2011, 3(10):821  doi: 10.1038/nchem.1123

    115. [115]

      Bakota, E.L., Aulisa, L., Galler, K.M. and Hartgerink, J.D., Biomacromolecules, 2011, 12(1):82  doi: 10.1021/bm1010195

    116. [116]

      Aulisa, L., Dong, H. and Hartgerink, J.D., Biomacromolecules, 2009, 10(9):2694  doi: 10.1021/bm900634x

    117. [117]

      Lindsey, S., Piatt, J.H., Worthington, P., Sonmez, C., Satheye, S., Schneider, J.P., Pochan, D.J. and Langhans, S.A., Biomacromolecules, 2015, 16(9):2672  doi: 10.1021/acs.biomac.5b00541

    118. [118]

      Medina, S.H., Li, S., Howard, O.M.Z., Dunlap, M., Trivett, A., Schneider, J.P. and Oppenheim, J.J., Biomaterials, 2015, 53:545  doi: 10.1016/j.biomaterials.2015.02.125

    119. [119]

      Smith, D.J., Brat, G.A., Medina, S.H., Tong, D., Huang, Y., Grahammer, J., Furtmuller, G.J., Oh, B.C., Nagy-Smith, K.J., Walczak, P., Brandacher, G. and Schneider, J.P., Nat. Nanotechnol., 2016, 11(1):95

    120. [120]

      Frederix, P.W., Scott, G.G., Abul-Haija, Y.M., Kalafatovic, D., Pappas, C.G., Javid, N., Hunt, N.T., Ulijn, R.V. and Tuttle, T., Nat. Chem., 2015, 7(1):30

    121. [121]

      Kumar, V.A., Shi, S., Wang, B.K., Li, I.C., Jalan, A.A., Sarkar, B., Wickremasinghe, N.C. and Hartgerink, J.D., J. Am. Chem. Soc., 2015, 137(14):4823  doi: 10.1021/jacs.5b01549

    122. [122]

      Pappas, C.G., Frederix, P.W.J.M., Mutasa, T., Fleming, S., Abul-Haija, Y.M., Kelly, S.M., Gachagan, A., Kalafatovic, D., Trevino, J., Ulijn, R.V. and Bai, S., Chem. Commun., 2015, 51(40):8465  doi: 10.1039/C5CC02049B

    123. [123]

      Conte, M.P., Singh, N., Sasselli, I.R., Escuder, B. and Ulijn, R.V., Chem. Commun., 2016, 52(96):13889  doi: 10.1039/C6CC05821C

    124. [124]

      Kumar, V.A., Taylor, N.L., Shi, S.Y., Wickremasinghe, N.C., D'Souza, R.N. and Hartgerink, J.D., Biomaterials, 2015, 52:71  doi: 10.1016/j.biomaterials.2015.01.079

    125. [125]

      Kang, M.K., Colombo, J.S., D'Souza, R.N. and Hartgerink, J.D., Biomacromolecules, 2014, 15(6):2004  doi: 10.1021/bm500075r

    126. [126]

      Kumar, V.A., Liu, Q., Wickremasinghe, N.C., Shi, S.Y., Cornwright, T.T., Deng, Y.X., Azares, A., Moore, A.N., Acevedo-Jake, A.M., Agudo, N.R., Pan, S., Woodside, D.G., Vanderslice, P., Willerson, J.T., Dixon, R.A. and Hartgerink, J.D., Biomaterials, 2016, 98:113  doi: 10.1016/j.biomaterials.2016.04.032

    127. [127]

      Kumar, V.A., Taylor, N.L., Shi, S.Y., Wang, B.K., Jalan, A.A., Kang, M.K., Wickremasinghe, N.C. and Hartgerink, J.D., ACS Nano, 2015, 9(1):860  doi: 10.1021/nn506544b

    128. [128]

      Wickremasinghe, N.C., Kumar, V.A., Shi, S.Y. and Hartgerink, J.D., ACS Biomater. Sci. Eng., 2015, 1(9):845  doi: 10.1021/acsbiomaterials.5b00210

    129. [129]

      Cui, H., Pashuck, E.T., Velichko, Y.S., Weigand, S.J., Cheetham, A.G., Newcomb, C.J. and Stupp, S.I., Science, 2010, 327(5965):555  doi: 10.1126/science.1182340

    130. [130]

      Hartgerink, J.D., Beniash, E. and Stupp, S.I., Science, 2001, 294(5547):1684  doi: 10.1126/science.1063187

    131. [131]

      Silva, G.A., Czeisler, C., Niece, K.L., Beniash, E., Harrington, D.A., Kessler, J.A. and Stupp, S.I., Science, 2004, 303(5662):1352  doi: 10.1126/science.1093783

    132. [132]

      Chung, E.J., Cheng, Y., Morshed, R., Nord, K., Han, Y., Wegscheid, M.L., Auffinger, B., Wainwright, D.A., Lesniak, M.S. and Tirrell, M.V., Biomaterials, 2014, 35(4):1249  doi: 10.1016/j.biomaterials.2013.10.064

    133. [133]

      Chung, E.J., Mlinar, L.B., Sugimoto, M.J., Nord, K., Roman, B.B. and Tirrell, M., Nanomed. Nanotechnol. Biol. Med., 2015, 11(2):479  doi: 10.1016/j.nano.2014.08.006

    134. [134]

      Mlinar, L.B., Chung, E.J., Wonder, E.A. and Tirrell, M., Biomaterials, 2014, 35(30):8678  doi: 10.1016/j.biomaterials.2014.06.054

    135. [135]

      Trent, A., Ulery, B.D., Black, M.J., Barrett, J.C., Liang, S., Kostenko, Y., David, N.A. and Tirrell, M.V., AAPS J., 2015, 17(2):380  doi: 10.1208/s12248-014-9707-3

    136. [136]

      Lowik, D.W.P.M. and van Hest, J.C.M., Chem. Soc. Rev., 2004, 33(4):234  doi: 10.1039/B212638A

    137. [137]

      van den Heuvel, M., Baptist, H., Venema, P., van der Linden, E., Lowik, D.W.P.M. and van Hest, J.C.M., Soft Matter, 2011, 7(20):9737  doi: 10.1039/c1sm05642e

    138. [138]

      Hamley, I.W. and Castelletto, V., Bioconjug. Chem., 2017, 28(3):731  doi: 10.1021/acs.bioconjchem.6b00284

    139. [139]

      Miravet, J.F., Escuder, B., Segarra-Maset, M.D., Tena-Solsona, M., Hamley, I.W., Dehsorkhi, A. and Castelletto, V., Soft Matter, 2013, 9(13):3558  doi: 10.1039/c3sm27899a

    140. [140]

      Hamley, I.W., Soft Matter, 2011, 7(9):4122  doi: 10.1039/c0sm01218a

    141. [141]

      Harrington, D.A., Cheng, E.Y., Guler, M.O., Lee, L.K., Donovan, J.L., Claussen, R.C. and Stupp, S.I., J. Biomed. Mater. Res. A, 2006, 78A(1):157

    142. [142]

      Webber, M.J., Kessler, J.A. and Stupp, S.I., J. Intern. Med., 2010, 267(1):71  doi: 10.1111/jim.2009.267.issue-1

    143. [143]

      Boekhoven, J. and Stupp, S.I., Adv. Mater., 2014, 26(11):1642  doi: 10.1002/adma.201304606

    144. [144]

      Lin, B.F., Megley, K.A., Viswanathan, N., Krogstad, D.V., Drews, L.B., Kade, M.J., Qian, Y.C. and Tirrell, M.V., J. Mater. Chem., 2012, 22(37):19447  doi: 10.1039/c2jm31745a

    145. [145]

      Black, M., Trent, A., Kostenko, Y., Lee, J.S., Olive, C. and Tirrell, M., Adv. Mater., 2012, 24(28):3845  doi: 10.1002/adma.v24.28

    146. [146]

      Soukasene, S., Toft, D.J., Moyer, T.J., Lu, H.M., Lee, H.K., Standley, S.M., Cryns, V.L. and Stupp, S.I., ACS Nano, 2011, 5(11):9113  doi: 10.1021/nn203343z

    147. [147]

      Matson, J.B. and Stupp, S.I., Chem. Commun., 2011, 47(28):7962  doi: 10.1039/c1cc12570b

    148. [148]

      Dehsorkhi, A., Castelletto, V. and Hamley, I.W., J. Pept. Sci., 2014, 20(7):453  doi: 10.1002/psc.v20.7

    149. [149]

      Hamley, I.W., Angew. Chem. Int. Ed., 2007, 46(43):8128  doi: 10.1002/(ISSN)1521-3773

    150. [150]

      Tysseling-Mattiace, V.M., Sahni, V., Niece, K.L., Birch, D., Czeisler, C., Fehlings, M.G., Stupp, S.I. and Kessler, J.A., J. Neurosci., 2008, 28(14):3814  doi: 10.1523/JNEUROSCI.0143-08.2008

    151. [151]

      Li, A., Hokugo, A., Yalom, A., Berns, E.J., Stephanopoulos, N., McClendon, M.T., Segovia, L.A., Spigelman, I., Stupp, S.I. and Jarrahy, R., Biomaterials, 2014, 35(31):8780  doi: 10.1016/j.biomaterials.2014.06.049

    152. [152]

      Berns, E.J., Alvarez, Z., Goldberger, J.E., Boekhoven, J., Kessler, J.A., Kuhn, H.G. and Stupp, S.I., Acta. Biomater., 2016, 37:50  doi: 10.1016/j.actbio.2016.04.010

    153. [153]

      Black, K.A., Lin, B.F., Wonder, E.A., Desai, S.S., Chung, E.J., Ulery, B.D., Katari, R.S. and Tirrell, M.V., Tissue Eng. Part A, 2015, 21(7-8):1333  doi: 10.1089/ten.tea.2014.0297

    154. [154]

      Cinar, G., Ozdemir, A., Hamsici, S., Gunay, G., Dana, A., Tekinay, A.B. and Guler, M.O., Biomater. Sci., 2017, 5(1):67  doi: 10.1039/C6BM00656F

    155. [155]

      Wan, Y.M., Wang, Z.N., Sun, J. and Li, Z.B., Langmuir, 2016, 32(30):7512  doi: 10.1021/acs.langmuir.6b00727

    156. [156]

      Wan, Y.M., Liu, L.B., Yuan, S.S., Sun, J. and Li, Z.B., Langmuir, 2017, 33(13):3234  doi: 10.1021/acs.langmuir.6b03986

    157. [157]

      Kuang, Y., Shi, J.F., Li, J., Yuan, D., Alberti, K.A., Xu, Q.B. and Xu, B., Angew. Chem. Int. Ed., 2014, 53(31):8104  doi: 10.1002/anie.201402216

    158. [158]

      Abul-Haija, Y.M., Roy, S., Frederix, P.W.J.M., Javid, N., Jayawarna, V. and Ulijn, R.V., Small, 2014, 10(5):973  doi: 10.1002/smll.201301668

    159. [159]

      Draper, E.R., Eden, E.G.B., McDonald, T.O. and Adams, D.J., Nat. Chem., 2015, 7(10):849

    160. [160]

      Vegners, R., Shestakova, I., Kalvinsh, I., Ezzell, R. and Janmey, P., J. Pept. Sci., 1995, 1(6):371  doi: 10.1002/(ISSN)1099-1387

    161. [161]

      Shi, Y., Wang, J., Wang, H., Hu, Y., Chen, X. and Yang, Z., PloS one, 2014, 9(9):106968  doi: 10.1371/journal.pone.0106968

    162. [162]

      Kuang, Y., Du, X.W., Zhou, J. and Xu, B., Adv. Healthc. Mater., 2014, 3(8):1217  doi: 10.1002/adhm.v3.8

    163. [163]

      Li, J., Kuang, Y., Shi, J.F., Zhou, J., Medina, J.E., Zhou, R., Yuan, D., Yang, C.H., Wang, H.M., Yang, Z.M., Liu, J.F., Dinulescu, D.M. and Xu, B., Angew. Chem. Int. Ed., 2015, 54(45):13307  doi: 10.1002/anie.201507157

    164. [164]

      Li, J., Shi, J., Medina, J.E., Zhou, J., Du, X., Wang, H., Yang, C., Liu, J., Yang, Z., Dinulescu, D.M. and Xu, B., Adv. Healthc. Mater., 2017

    165. [165]

      Zhou, J., Du, X.W., Yamagata, N. and Xu, B., J. Am. Chem. Soc., 2016, 138(11):3813  doi: 10.1021/jacs.5b13541

    166. [166]

      Zhou, J., Du, X.W., Gao, Y., Shi, J.F. and Xu, B., J. Am. Chem. Soc., 2014, 136(8):2970  doi: 10.1021/ja4127399

    167. [167]

      Jayawarna, V., Ali, M., Jowitt, T.A., Miller, A.E., Saiani, A., Gough, J.E. and Ulijn, R.V., Adv. Mater., 2006, 18(5):611  doi: 10.1002/(ISSN)1521-4095

    168. [168]

      Mahler, A., Reches, M., Rechter, M., Cohen, S. and Gazit, E., Adv. Mater., 2006, 18(11):1365  doi: 10.1002/(ISSN)1521-4095

    169. [169]

      Fleming, S., Debnath, S., Frederix, P.W.J.M., Hunt, N.T. and Ulijn, R.V., Biomacromolecules, 2014, 15(4):1171  doi: 10.1021/bm401720z

    170. [170]

      Pappas, C.G., Abul-Haija, Y.M., Flack, A., Frederix, P.W.J.M. and Ulijn, R.V., Chem. Commun., 2014, 50(73):10630  doi: 10.1039/C4CC04926H

    171. [171]

      Raeburn, J., Alston, B., Kroeger, J., McDonald, T.O., Howse, J.R., Cameron, P.J. and Adams, D.J., Mater. Horizons, 2014, 1(2):241  doi: 10.1039/C3MH00150D

    172. [172]

      Draper, E.R., Wallace, M., Schweins, R., Poole, R.J. and Adams, D.J., Langmuir, 2017, 33(9):2387  doi: 10.1021/acs.langmuir.7b00326

    173. [173]

      Cheetham, A.G., Zhang, P., Lin, Y.A., Lock, L.L. and Cui, H., J. Am. Chem. Soc., 2013, 135(8):2907  doi: 10.1021/ja3115983

    174. [174]

      Lin, R. and Cui, H., Curr. Opin. Chem. Eng., 2015, 7:75  doi: 10.1016/j.coche.2014.11.005

    175. [175]

      Cheetham, A.G., Ou, Y.C., Zhang, P. and Cui, H., Chem. Commun., 2014, 50(45):6039  doi: 10.1039/C3CC49453E

    176. [176]

      Lin, Y.A., Cheetham, A.G., Zhang, P., Ou, Y.C., Li, Y., Liu, G., Hermida-Merino, D., Hamley, I.W. and Cui, H., ACS Nano, 2014, 8(12):12690  doi: 10.1021/nn505688b

    177. [177]

      Ma, W., Cheetham, A.G. and Cui, H., Nano Today, 2016, 11(1):13  doi: 10.1016/j.nantod.2015.11.003

    178. [178]

      Cheetham, A.G., Lin, Y.A., Lin, R. and Cui, H., Acta Pharmacol. Sin., 2017, 38(6):874  doi: 10.1038/aps.2016.151

    179. [179]

      Lin, R., Cheetham, A.G., Zhang, P., Lin, Y.A. and Cui, H., Chem. Commun., 2013, 49(43):4968  doi: 10.1039/c3cc41896k

    180. [180]

      Cheetham, A.G., Zhang, P., Lin, Y.A., Lin, R. and Cui, H., J. Mater. Chem. B, 2014, 2(42):7316  doi: 10.1039/C4TB01084A

    181. [181]

      Su, H., Zhang, P., Cheetham, A.G., Koo, J.M., Lin, R., Masood, A., Schiapparelli, P., Quinones-Hinojosa, A. and Cui, H., Theranostics, 2016, 6(7):1065  doi: 10.7150/thno.15420

    182. [182]

      Ma, W., Su, H., Cheetham, A.G., Zhang, W., Kan, Q. and Cui, H., J. Control. Release, 2017, DOI:10.1016/j.jconrel.2017.01.015  doi: 10.1016/j.jconrel.2017.01.015

  • 加载中
    1. [1]

      Jianhui YinWenjing HuangChangyong GuoChao LiuFei GaoHonggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244

    2. [2]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    3. [3]

      Chuanfeng FanJian GaoYingkai GaoXintong YangGaoning LiXiaochun WangFei LiJin ZhouHaifeng YuYi HuangJin ChenYingying ShanLi Chen . A non-peptide-based chymotrypsin-targeted long-wavelength emission fluorescent probe with large Stokes shift and its application in bioimaging. Chinese Chemical Letters, 2024, 35(10): 109838-. doi: 10.1016/j.cclet.2024.109838

    4. [4]

      Lijuan Liu Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060

    5. [5]

      Yixuan Zhu Qingtong Wang Jin Li Lin Chen Junlong Zhao . Blog of Oxytocin. University Chemistry, 2024, 39(9): 134-140. doi: 10.12461/PKU.DXHX202310090

    6. [6]

      Wenlong LiFeishi ShanQingdong BaoQinghua LiHua GaoLeyong Wang . Supramolecular assembly nanoparticle for trans-epithelial treatment of keratoconus. Chinese Chemical Letters, 2024, 35(10): 110060-. doi: 10.1016/j.cclet.2024.110060

    7. [7]

      Binhan ZhaoZheng LiLan ZhengZhichao YeYuyang YuanShanshan ZhangBo LiangTianyu Li . Recent progress in the biomedical application of PEDOT:PSS hydrogels. Chinese Chemical Letters, 2024, 35(10): 109810-. doi: 10.1016/j.cclet.2024.109810

    8. [8]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    9. [9]

      Xingwen Cheng Haoran Ren Jiangshan Luo . Boosting the self-trapped exciton emission in vacancy-ordered double perovskites via supramolecular assembly. Chinese Journal of Structural Chemistry, 2024, 43(6): 100306-100306. doi: 10.1016/j.cjsc.2024.100306

    10. [10]

      Zixi ZouJingyuan WangYian SunQian WangDa-Hui Qu . Controlling molecular assembly on time scale: Time-dependent multicolor fluorescence for information encryption. Chinese Chemical Letters, 2024, 35(7): 108972-. doi: 10.1016/j.cclet.2023.108972

    11. [11]

      Zikang HuHengjie ZhangZhengqiu LiTianbao ZhaoZhipeng GuQijuan YuanBaoshu Chen . Multifunctional photothermal hydrogels: Design principles, various functions, and promising biological applications. Chinese Chemical Letters, 2024, 35(10): 109527-. doi: 10.1016/j.cclet.2024.109527

    12. [12]

      Zhe-Han YangJie YinLei XinYuanfang LiYijie HuangRuo YuanYing Zhuo . Research advancement of DNA-based intelligent hydrogels: Manufacture, characteristics, application of disease diagnosis and treatment. Chinese Chemical Letters, 2024, 35(10): 109558-. doi: 10.1016/j.cclet.2024.109558

    13. [13]

      Ningxiang Wu Huaping Zhao Yong Lei . Nanomaterials with highly ordered nanostructures: Definition, influence and future challenge. Chinese Journal of Structural Chemistry, 2024, 43(11): 100392-100392. doi: 10.1016/j.cjsc.2024.100392

    14. [14]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    15. [15]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    16. [16]

      Zhiwen Li Jingjing Zhang Gao Li . Dynamic assembly of chiral golden knots. Chinese Journal of Structural Chemistry, 2024, 43(7): 100300-100300. doi: 10.1016/j.cjsc.2024.100300

    17. [17]

      Rui WangYang LiangJulius Rebek Jr.Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228

    18. [18]

      Yi CaoXiaojiao GeYuanyuan WeiLulu HeAiguo WuJuan Li . Tumor microenvironment-activatable neuropeptide-drug conjugates enhanced tumor penetration and inhibition via multiple delivery pathways and calcium deposition. Chinese Chemical Letters, 2024, 35(4): 108672-. doi: 10.1016/j.cclet.2023.108672

    19. [19]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    20. [20]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

Metrics
  • PDF Downloads(0)
  • Abstract views(739)
  • HTML views(33)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return