Citation: Zhi-yu Lv, Michael C. Zhang, Yang Zhang, Bao-hua Guo, Jun Xu. Study on Melting and Recrystallization of Poly(butylene succinate) Lamellar Crystals via Step Heating Differential Scanning Calorimetry[J]. Chinese Journal of Polymer Science, ;2017, 35(12): 1552-1560. doi: 10.1007/s10118-017-1986-6 shu

Study on Melting and Recrystallization of Poly(butylene succinate) Lamellar Crystals via Step Heating Differential Scanning Calorimetry

  • Corresponding author: Jun Xu, jun-xu@mail.tsinghua.edu.cn
  • Received Date: 10 April 2017
    Revised Date: 7 May 2017
    Accepted Date: 17 May 2017

    Fund Project: the Sino-German Center for Research Promotion and the National Basic Research Program of China 2014CB932202the National Natural Science Foundation of China 21374054

  • Differential scanning calorimetry (DSC) has been widely applied to study crystallization and melting of materials. However, for polymeric lamellar crystals, the melting thermogram during heating process usually exhibits a broad endothermic peak or even multiple endotherms, which may result from changes of metastability via recrystallization process. Sometimes, the recrystallization exotherm cannot be observed due to its overlapping with the melting endotherm. In this work, we employed a step heating procedure consisting of successive heating and temperature holding stages to measure the metastability of isothermally crystallized poly(butylene succinate) (PBS) crystals. With this approach we could gain the fraction of crystals melted at different temperature ranges and quantitatively detect the melting-recrystallization behavior. The melting-recrystallization behavior depends on the polymer chain structure and the crystallization temperature. For instance, PBS block copolymer hardly shows recrystallization behavior while PBS oligomer and high molecular weight PBS homopolymer demonstrate remarkable melting-recrystallization phenomenon. High molecular weight PBS isothermally crystallized in the low temperature range shows multiple melting-recrystallization while those isothermally crystallized at elevated temperatures do not exhibit observable recrystallization behavior. Furthermore, the melting endotherms were fitted via the melting kinetics equations. The original isothermally crystallized lamellae demonstrate quite different melting kinetics from the recrystallized lamellar crystals that melt at the highest temperature range, which is attributed to the different degrees of stabilization. Finally, the mechanism of melting-recrystallization is briefly discussed. We propose that apparent melt-recrystallization phenomenon be observed when melting of preformed lamellar crystals and recrystallization of thicker lamellae have similar free energy barrier.
  • 加载中
    1. [1]

      Flory, P.J., Transac. Faraday Soc., 1955, 51:848  doi: 10.1039/tf9555100848

    2. [2]

      Zhang, M.C., Guo, B.H. and Xu, J., Crystals, 2017, 7:4

    3. [3]

      Tan, S., Su, A., Li, W. and Zhou, E., J. Polym. Sci., Part B:Polym. Phys., 2000, 38:53  doi: 10.1002/(ISSN)1099-0488

    4. [4]

      Kovacs, A.J., Gonthier, A. and Straupe, C., J. Polym. Sci.:Polym. Symp., 1975, 50:283
       

    5. [5]

      Toda, A., Oda, T., Hikosaka, M. and Saruyama, Y., Polymer, 1997, 38:231  doi: 10.1016/S0032-3861(96)00627-1

    6. [6]

      Cheng, S.Z.D., "Phase transitions in polymers:the role of metastable states", Elsevier, Oxford, 2008, p. 122

    7. [7]

      Geil, P., J. Polym. Sci. Part A:General Papers, 1964, 2:3835  doi: 10.1002/pol.1964.100020902

    8. [8]

      Zhang, B., Chen, J., Baier, M.C., Mecking, S., Reiter, R., Mülhaupt, R. and Reiter, G., Macromol. Rapid Commun., 2015, 36:181  doi: 10.1002/marc.201400433

    9. [9]

      Kojima, M., J. Polym. Sci. Part A-2:Polym. Phys., 1968, 6:1938  doi: 10.1002/pol.1968.160061110

    10. [10]

      Zhou, T.N., Yang, H., Ning, N.Y., Xiang, Y.F., Du, R.N. and Fu, Q., Chinese J. Polym. Sci., 2010, 28(1):77  doi: 10.1007/s10118-010-8217-8

    11. [11]

      Hu, D.D., Ye, S.B., Yu, F. and Feng, J.C., Chinese J. Polym. Sci., 2016, 34(3):344  doi: 10.1007/s10118-016-1745-0

    12. [12]

      Liu, Y.X., Li, J.F., Zhu, D.S., Chen, E.Q. and Zhang, H.D., Macromolecules, 2009, 42:2886  doi: 10.1021/ma802806q

    13. [13]

      Zhai, X.M., Wang, W., Ma, Z.P., Wen, X.J., Yuan, F., Tang, X.F. and He, B.L., Macromolecules, 2005, 38:1717  doi: 10.1021/ma047764+

    14. [14]

      Xia, N., Tang, X., Wen, X., Zhang, G., Zha, X. and Wang, W., Acta Polymerica Sinica (in Chinese), 2011, (9):1040
       

    15. [15]

      Chen, L., Jiang, J., Zhuravlev, E., Wei, L., Schick, C., Xue, G. and Zhou, D., Macromol. Chem. Phys., 2015, 216:2211  doi: 10.1002/macp.201500246

    16. [16]

      Xu, J., Heck, B., Ye, H.M., Jiang, J., Tang, Y.R., Liu, J., Guo, B.H., Reiter, R., Zhou, D.S. and Reiter, G., Macromolecules, 2016, 49:2206  doi: 10.1021/acs.macromol.5b02123

    17. [17]

      Xu, K.L., Guo, B.H., Reiter, R., Reiter, G. and Xu, J., Chin. Chem. Lett., 2015, 26:1105  doi: 10.1016/j.cclet.2015.06.002

    18. [18]

      Yoo, E. and Im, S., J. Polym. Sci., Part B:Polym. Phys., 1999, 37:1357
       

    19. [19]

      Yasuniwa, M., Tsubakihara, S., Satou, T. and Iura, K., J. Polym. Sci., Part B:Polym. Phys., 2005, 43:2039  doi: 10.1002/(ISSN)1099-0488

    20. [20]

      Wang, X., Zhou, J. and Li, L., Eur. Polym. J., 2007, 43:3163  doi: 10.1016/j.eurpolymj.2007.05.013

    21. [21]

      Qiu, Z., Komura, M., Ikehara, T. and Nishi, T., Polymer, 2003, 44:7781  doi: 10.1016/j.polymer.2003.10.045

    22. [22]

      Liu, X., Li, C., Zhang, D. and Xiao, Y., J. Polym. Sci., Part B:Polym. Phys., 2006, 44:900
       

    23. [23]

      Kampert, W.G. and Sauer, B.B., Polymer, 2001, 42:8703  doi: 10.1016/S0032-3861(01)00364-0

    24. [24]

      Sauer, B.B., Kampert, W.G., Blanchard, E.N., Threefoot, S.A. and Hsiao, B.S., Polymer, 2000, 41:1099  doi: 10.1016/S0032-3861(99)00258-X

    25. [25]

      Wunderlich, B., J. Macrom. Sci., Part B, 2003, 42:579  doi: 10.1081/MB-120021585

    26. [26]

      Lv, Y., Zhu, H., An, M.F., Xu, H.J., Zhang, L. and Wang, Z.B., Chinese J. Polym. Sci., 2016, 34(12):1510  doi: 10.1007/s10118-016-1866-5

    27. [27]

      Minakov, A.A., Mordvintsev, D.A. and Schick, C., Polymer, 2004, 45:3755  doi: 10.1016/j.polymer.2004.03.072

    28. [28]

      Minakov, A.A., Mordvintsev, D.A. and Schick, C., Faraday Discuss., 2005, 128:261  doi: 10.1039/B403441D

    29. [29]

      Mathot, V., Pyda, M., Pijpers, T., Vanden Poel, G., van de Kerkhof, E., van Herwaarden, S., van Herwaarden, F. and Leenaers, A., Thermochim. Acta, 2011, 522:36  doi: 10.1016/j.tca.2011.02.031

    30. [30]

      Müller, A.J., Hernández, Z.H., Arnal, M.L. and Sánchez, J.J., Polym. Bull., 1997, 39:465  doi: 10.1007/s002890050174

    31. [31]

      Starck, P., Polym. Int., 1996, 40:111  doi: 10.1002/(ISSN)1097-0126

    32. [32]

      Adisson, E., Ribeiro, M., Deffieux, A. and Fontanille, M., Polymer, 1992, 33:4337  doi: 10.1016/0032-3861(92)90276-3

    33. [33]

      Arnal, M.L., Balsamo, V., Ronca, G., Sánchez, A., Müller, A.J., Cañizales, E. and de Navarro, C.U., J. Therm. Anal. Calorim., 2000, 59:451  doi: 10.1023/A:1010137408023

    34. [34]

      Zhang, Y., Xu, J. and Guo, B.H., Colloid. Surface., A, 2016, 489:173
       

    35. [35]

      Zhang, Y., Li, T., Xie, Z., Han, J., Xu, J. and Guo, B.H., Ind. Eng. Chem. Res., 2017, 56:3937  doi: 10.1021/acs.iecr.7b00516

    36. [36]

      Toda, A., Androsch, R. and Schick, C., Polymer, 2016, 91:239  doi: 10.1016/j.polymer.2016.03.038

    37. [37]

      Furushima, Y., Kumazawa, S., Umetsu, H., Toda, A., Zhuravlev, E. and Schick, C., Polymer, 2017, 109:307  doi: 10.1016/j.polymer.2016.12.053

    38. [38]

      Lauritzen Jr., J.I. and Hoffman, J.D., J. Appl. Phys., 1973, 44:4340  doi: 10.1063/1.1661962

    39. [39]

      Park, J.W., Kim, D.K. and Im, S.S., Polym. Int., 2002, 51:239  doi: 10.1002/(ISSN)1097-0126

    40. [40]

      Yeh, G.S., Hosemann, R., Loboda-Čačković, J. and Čačković, H., Polymer, 1976, 17:309  doi: 10.1016/0032-3861(76)90187-7

    41. [41]

      Zheng, G.Q., Jia, Z.H., Li, S.W., Dai, K., Liu, B.C., Zhang, X.L., Mi, L.W., Liu, C.T., Chen, J.B., Shen, C.Y., Peng, X.F. and Li, Q., Polym. Int., 2011, 60:1434  doi: 10.1002/pi.v60.10

    42. [42]

      Liu, Q., Li, H., Qiu, Z. and Yan, S., Polym. Int., 2012, 61:1417  doi: 10.1002/pi.v61.9

    43. [43]

      Chen, E.Q., Jing, A.J., Weng, X., Huang, P., Lee, S.W., Cheng, S.Z.D., Hsiao, B.S. and Yeh, F.J., Polymer, 2003, 44:6051  doi: 10.1016/S0032-3861(03)00557-3

    44. [44]

      Vogel, H., Phys. Z., 1921, 22:645
       

    45. [45]

      Fulcher, G.S., J. Am. Ceram. Soc., 1925, 8:339  doi: 10.1111/jace.1925.8.issue-6

  • 加载中
    1. [1]

      Jiayao Li Xinru Peng Shiwei Yin Changwei Wang Yirong Mo . Metastability of π-π stacking between the closed-shell ions of like charges. Chinese Journal of Structural Chemistry, 2024, 43(5): 100213-100213. doi: 10.1016/j.cjsc.2023.100213

    2. [2]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    3. [3]

      Tao BanXi-Yang YuHai-Kuo TianZheng-Qing HuangChun-Ran Chang . One-step conversion of methane and formaldehyde to ethanol over SA-FLP dual-active-site catalysts: A DFT study. Chinese Chemical Letters, 2024, 35(4): 108549-. doi: 10.1016/j.cclet.2023.108549

    4. [4]

      Haojie SongLaiyu LuoSiyu WangGuo ZhangBaojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347

    5. [5]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

    6. [6]

      Weijian ZhangXianyu DengLiying WangJian WangXiuting GuoLianggui HuangXinyi WangJun WuLinjia Jiang . Poly(ferulic acid) nanocarrier enhances chemotherapy sensitivity of acute myeloid leukemia by selectively targeting inflammatory macrophages. Chinese Chemical Letters, 2024, 35(9): 109422-. doi: 10.1016/j.cclet.2023.109422

    7. [7]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

    8. [8]

      Zhili LiQijun WoDongdong HuangDezhong ZhouLei GuoYeqing Mao . Improving gene transfection efficiency of highly branched poly(β-amino ester)s through the in-situ conversion of inactive terminal groups. Chinese Chemical Letters, 2024, 35(8): 109737-. doi: 10.1016/j.cclet.2024.109737

    9. [9]

      Zhenchun YangBixiao GuoZhenyu HuKun WangJiahao CuiLina LiChun HuYubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251

Metrics
  • PDF Downloads(0)
  • Abstract views(586)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return