Citation: Ke-yu Zhou, Jian-bo Li, Han-xuan Wang, Jie Ren. Effect of Star-shaped Chain Architectures on the Polylactide Stereocomplex Crystallization Behaviors[J]. Chinese Journal of Polymer Science, ;2017, 35(8): 974-991. doi: 10.1007/s10118-017-1935-4 shu

Effect of Star-shaped Chain Architectures on the Polylactide Stereocomplex Crystallization Behaviors

  • Corresponding author: Jian-bo Li, lijianbo@tongji.edu.cn Jie Ren, renjie6598@163.com
  • Received Date: 19 December 2016
    Revised Date: 16 January 2017
    Accepted Date: 23 January 2017

    Fund Project: the National Natural Science Foundation of China 51203118the National High-Tech R & D Program of China 2013AA032202

  • Linear and star-shaped polylactides (PLA) with similar molecular weights of each arm are synthesized via ring-opening polymerization of LA with 3-butyn-1-ol and pentaerythritol as initiators, respectively. By solution blending of equivalent mass of poly(L-lactic acid)s (PLLAs) and poly(D-lactic acid)s (PDLAs), perfect PLA stereocomplexes (scPLAs) are prepared and confirmed by WAXD and FTIR analysis. Effect of chain architectures on stereocomplex crystallization is investigated by studying the non-isothermal and isothermal crystallization of linear and star-shaped polylactide stereocomplexes. In dynamic DSC and POM test, star-shaped PLLA (4sPLLA)/PDLA and PLLA/star-shaped PDLA (4sPDLA) stereocomplexes reach rapid crystallization and higher crystallinity due to larger spherulite density of star-shaped chain and excellent chain mobility of linear chain. In isothermal crystallization test, much faster crystallization and less crystallization half-time is obtained with the increase of star-shaped chain. Meanwhile, 4sPLLA/PDLA and PLLA/4sPDLA are found to have the highest crystallinity, suggesting limitation of too much star-shaped chain for 4sPLLA/4sPDLA and restriction of linear chain in nucleation capacity for PLLA/PDLA. The results reveal that star-shaped chain has an important influence on the crystallization of scPLAs.
  • 
    1. [1]

      Zhao, L.F., Cheng, J., Tian, X.J. and Zhang, R.L., Chinese J. Polym. Sci., 2015, 33(3):499  doi: 10.1007/s10118-015-1604-4

    2. [2]

      Solarski, S., Mahjoubi, F., Ferreira, M., Devaux, E., Bachelet, P. and Bourbigot, S., J. Mater. Sci., 2007, 42(13):5108

    3. [3]

      Xiang, S., Jun, S., Li, G., Bian, X.C., Feng, L.D., Chen, X.S., Liu, F.Q. and Huang, S.Y., Chinese J. Polym. Sci., 2016, 34(1):69  doi: 10.1007/s10118-016-1727-2

    4. [4]

      Oh, J.K., Soft Matter, 2011, 7(11):5100

    5. [5]

      Lasprilla, A.J.R., Martinez, G.A.R., Lunelli, B.H., Jardini, A.L. and Maciel Filho, R., Biotechnol. Adv., 2012, 30(1):323

    6. [6]

      Saeidlou, S., Huneault, M.A., Li, H. and Park, C.B., Prog. Polym. Sci., 2012, 37(12):1659

    7. [7]

      Li, Y., Wang, Y., Liu, L., Han, L., Xiang, F. and Zhou, Z., J. Polym. Sci., Part B:Polym. Phys., 2009, 47(3):328

    8. [8]

      Hashima, K., Nishitsuji, S. and Inoue, T., Polymer, 2010, 51(17):3935

    9. [9]

      Lim, L.T., Auras, R. and Rubino, M., Prog. Polym. Sci., 2008, 33(8):824

    10. [10]

      Na, B., Tian, N., Lv, R., Zou, S., Xu, W. and Fu, Q., Macromolecules, 2010, 2(43):1156

    11. [11]

      Harris, A.M. and Lee, E.C., J. Appl. Polym. Sci., 2008, 107(4):2248

    12. [12]

      Schmidt, S.C. and Hillmyer, M.A., J. Polym. Sci., Part B:Polym. Phys., 2001, 39(3):302

    13. [13]

      Tsuji, H., Takai, H., Fukuda, N. and Takikawa, H., Macromol. Mater. Eng., 2006, 291(4):325  doi: 10.1002/(ISSN)1439-2054

    14. [14]

      Fehri, S., Cinelli, P., Coltelli, M.B., Anguillesi, I. and Lazzeri, A., Int. J. Chem. Eng. Appl., 2016, 7(2):85

    15. [15]

      Zhang, Y., Chinese J. Polym. Sci., 2013, 31(9):1276  doi: 10.1007/s10118-013-1326-4

    16. [16]

      Yin, H.Y., Wei, X.F., Bao, R.Y., Dong, Q.X., Liu, Z.Y., Yang, W., Xie, B.H. and Yang, M.B., CrystEngComm, 2015, 17(23):4334  doi: 10.1039/C5CE00645G

    17. [17]

      Pillin, I., Montrelay, N. and Grohens, Y., Polymer, 2006, 47(13):4676  doi: 10.1016/j.polymer.2006.04.013

    18. [18]

      Xiao, H., Lu, W. and Yeh, J.T., J. Appl. Polym. Sci., 2009, 113(1):112  doi: 10.1002/app.v113:1

    19. [19]

      Kulinski, Z. and Piorkowska, E., Polymer, 2005, 46(23):10290  doi: 10.1016/j.polymer.2005.07.101

    20. [20]

      Zhou, J., Jiang, Z., Wang, Z., Zhang, J., Li, J., Li, Y., Zhang, J., Chen, P. and Gu, Q., RSC Adv., 2013, 3(40):18464  doi: 10.1039/c3ra42096e

    21. [21]

      Pan, P., Liang, Z., Zhu, B., Dong, T. and Inoue, Y., Macromolecules, 2009, 42(9):3375

    22. [22]

      Yang, S., Wu, Z.H., Yang, W. and Yang, M.B., Polym. Test., 2008, 27(8):958

    23. [23]

      Ikada, Y., Jamshidi, K., Tsuji, H. and Hyon, S.H., Macromolecules, 1987, 20(4):904  doi: 10.1021/ma00170a034

    24. [24]

      Okihara, T., Tsuji, M., Kawaguchi, A., Katayama, K.I., Tsuji, H., Hyon, S.H. and Ikada, Y., J. Macromol. Sci., Part B:Phys., 1991, 30(1-2):119

    25. [25]

      Zhang, J., Sato, H., Tsuji, H., Noda, I. and Ozaki, Y., Macromolecules, 2005, 38(5):1822  doi: 10.1021/ma047872w

    26. [26]

      Fan, Y., Nishida, H., Shirai, Y., Tokiwa, Y. and Endo, T., Polym. Degrad. Stab., 2004, 86(2):197  doi: 10.1016/j.polymdegradstab.2004.03.001

    27. [27]

      Regnell Andersson, S., Hakkarainen, M., Inkinen, S., Södergård, A. and Albertsson, A.C., Biomacromolecules, 2012, 13(4):1212  doi: 10.1021/bm300196h

    28. [28]

      Tsuji, H., Macromol. Biosci., 2005, 5(7):569  doi: 10.1002/(ISSN)1616-5195

    29. [29]

      Cheerarot, O. and Baimark, Y., J. Chem., 2015, DOI:10.1155/2015/206123  doi: 10.1155/2015/206123

    30. [30]

      Wang, Y. and Mano, J.F., J. Appl. Polym. Sci., 2008, 107(3):1621  doi: 10.1002/(ISSN)1097-4628

    31. [31]

      Brochu, S., Prud'Homme, R.E., Barakat, I. and Jerome, R., Macromolecules, 1995, 28(15):5230  doi: 10.1021/ma00119a010

    32. [32]

      Furuhashi, Y., Kimura, Y., Yoshie, N. and Yamane, H., Polymer, 2006, 47(16):5965  doi: 10.1016/j.polymer.2006.06.001

    33. [33]

      Tsuji, H., Adv. Drug. Del. Rev., 2016, 107:97  doi: 10.1016/j.addr.2016.04.017

    34. [34]

      Inkinen, S., Stolt, M. and Södergård, A., Polym. Adv. Technol., 2011, 22(12):1658  doi: 10.1002/pat.v22.12

    35. [35]

      Shao, J., Sun, J., Bian, X., Cui, Y., Li, G. and Chen, X., J. Phys. Chem. B., 2012, 116(33):9983  doi: 10.1021/jp303402j

    36. [36]

      Biela, T., Duda, A. and Penczek, S., Macromolecules, 2006, 39(11):3710  doi: 10.1021/ma060264r

    37. [37]

      Nouri, S., Dubois, C. and Lafleur, P.G., Polymer, 2015, 67:228

    38. [38]

      Tan, B.H., Hussain, H., Lin, T.T., Chua, Y.C., Leong, Y.W., Tjiu, W.W., Wong, P.K. and He, C.B., Langmuir, 2011, 27(17):10538  doi: 10.1021/la202110w

    39. [39]

      Purnama, P., Jung, Y. and Kim, S.H., Polym. Degrad. Stab., 2013, 98(5):1097  doi: 10.1016/j.polymdegradstab.2013.02.010

    40. [40]

      Gardella, L., Basso, A., Prato, M. and Monticelli, O., RSC Adv., 2015, 5(58):46774  doi: 10.1039/C5RA05295E

    41. [41]

      Sakamoto, Y. and Tsuji, H., Macromol. Chem. Phys., 2013, 214(7):776  doi: 10.1002/macp.v214.7

    42. [42]

      Geschwind, J., Rathi, S., Tonhauser, C., Schömer, M., Hsu, S.L., Coughlin, E.B. and Frey, H., Macromol. Chem. Phys., 2013, 214(13):1434  doi: 10.1002/macp.v214.13

    43. [43]

      Nagahama, K., Nishimura, Y., Ohya, Y. and Ouchi, T., Polymer, 2007, 48(9):2649  doi: 10.1016/j.polymer.2007.03.017

    44. [44]

      Nagahama, K., Fujiura, K., Enami, S., Ouchi, T. and Ohya, Y., J. Polym. Sci., Part A:Polym. Chem., 2008, 46(18):6317  doi: 10.1002/pola.v46:18

    45. [45]

      Nederberg, F., Appel, E., Tan, J.P.K., Kim, S.H., Fukushima, K., Sly, J. and Hedrick, J.L., Biomacromolecules, 2009, 10(6):1460  doi: 10.1021/bm900056g

    46. [46]

      Shao, J., Tang, Z., Sun, J., Li, G. and Chen, X., J. Polym. Sci., Part B:Polym. Phys., 2014, 52(23):1560  doi: 10.1002/polb.23597

    47. [47]

      Tsuji, H., Matsumura, N. and Arakawa, Y., J. Phys. Chem. B., 2016, 120(6):1183  doi: 10.1021/acs.jpcb.5b11813

    48. [48]

      Tsuji, H. and Tajima, T., Macromol. Mater. Eng., 2014, 299(9):1089

    49. [49]

      Bao, J., Han, L., Shan, G., Bao, Y. and Pan, P., J. Phys. Chem. B., 2015, 119(39):12689  doi: 10.1021/acs.jpcb.5b05398

    50. [50]

      Long, L., Zhao, J., Li, K., He, L., Qian, X., Liu, C., Wang, L., Yang, X., Sun, J., Ren, Y., Kang, C. and Yuan, X., Mater. Chem. Phys., 2016, 180:184  doi: 10.1016/j.matchemphys.2016.05.062

    51. [51]

      Fischer, E.W., Sterzel, H.J. and Wegner, G., Colloid. Polym. Sci., 1973, 251(11):980

    52. [52]

      Tsuji, H., Horii, F., Nakagawa, M., Ikada, Y., Odani, H. and Kitamaru, R., Macromolecules, 1992, 25(16):4114  doi: 10.1021/ma00042a011

    53. [53]

      Routaray, A., Mantri, S., Nath, N., Sutar, A.K. and Maharana, T., Chinese Chem. Lett., 2016, 27(12):1763  doi: 10.1016/j.cclet.2016.06.011

    54. [54]

      Na, B., Zou, S. and Lv, R., J. Macromol. Sci., Part B:Phys., 2014, 53(1):162  doi: 10.1080/00222348.2013.808539

    1. [1]

      Zhao, L.F., Cheng, J., Tian, X.J. and Zhang, R.L., Chinese J. Polym. Sci., 2015, 33(3):499  doi: 10.1007/s10118-015-1604-4

    2. [2]

      Solarski, S., Mahjoubi, F., Ferreira, M., Devaux, E., Bachelet, P. and Bourbigot, S., J. Mater. Sci., 2007, 42(13):5108

    3. [3]

      Xiang, S., Jun, S., Li, G., Bian, X.C., Feng, L.D., Chen, X.S., Liu, F.Q. and Huang, S.Y., Chinese J. Polym. Sci., 2016, 34(1):69  doi: 10.1007/s10118-016-1727-2

    4. [4]

      Oh, J.K., Soft Matter, 2011, 7(11):5100

    5. [5]

      Lasprilla, A.J.R., Martinez, G.A.R., Lunelli, B.H., Jardini, A.L. and Maciel Filho, R., Biotechnol. Adv., 2012, 30(1):323

    6. [6]

      Saeidlou, S., Huneault, M.A., Li, H. and Park, C.B., Prog. Polym. Sci., 2012, 37(12):1659

    7. [7]

      Li, Y., Wang, Y., Liu, L., Han, L., Xiang, F. and Zhou, Z., J. Polym. Sci., Part B:Polym. Phys., 2009, 47(3):328

    8. [8]

      Hashima, K., Nishitsuji, S. and Inoue, T., Polymer, 2010, 51(17):3935

    9. [9]

      Lim, L.T., Auras, R. and Rubino, M., Prog. Polym. Sci., 2008, 33(8):824

    10. [10]

      Na, B., Tian, N., Lv, R., Zou, S., Xu, W. and Fu, Q., Macromolecules, 2010, 2(43):1156

    11. [11]

      Harris, A.M. and Lee, E.C., J. Appl. Polym. Sci., 2008, 107(4):2248

    12. [12]

      Schmidt, S.C. and Hillmyer, M.A., J. Polym. Sci., Part B:Polym. Phys., 2001, 39(3):302

    13. [13]

      Tsuji, H., Takai, H., Fukuda, N. and Takikawa, H., Macromol. Mater. Eng., 2006, 291(4):325  doi: 10.1002/(ISSN)1439-2054

    14. [14]

      Fehri, S., Cinelli, P., Coltelli, M.B., Anguillesi, I. and Lazzeri, A., Int. J. Chem. Eng. Appl., 2016, 7(2):85

    15. [15]

      Zhang, Y., Chinese J. Polym. Sci., 2013, 31(9):1276  doi: 10.1007/s10118-013-1326-4

    16. [16]

      Yin, H.Y., Wei, X.F., Bao, R.Y., Dong, Q.X., Liu, Z.Y., Yang, W., Xie, B.H. and Yang, M.B., CrystEngComm, 2015, 17(23):4334  doi: 10.1039/C5CE00645G

    17. [17]

      Pillin, I., Montrelay, N. and Grohens, Y., Polymer, 2006, 47(13):4676  doi: 10.1016/j.polymer.2006.04.013

    18. [18]

      Xiao, H., Lu, W. and Yeh, J.T., J. Appl. Polym. Sci., 2009, 113(1):112  doi: 10.1002/app.v113:1

    19. [19]

      Kulinski, Z. and Piorkowska, E., Polymer, 2005, 46(23):10290  doi: 10.1016/j.polymer.2005.07.101

    20. [20]

      Zhou, J., Jiang, Z., Wang, Z., Zhang, J., Li, J., Li, Y., Zhang, J., Chen, P. and Gu, Q., RSC Adv., 2013, 3(40):18464  doi: 10.1039/c3ra42096e

    21. [21]

      Pan, P., Liang, Z., Zhu, B., Dong, T. and Inoue, Y., Macromolecules, 2009, 42(9):3375

    22. [22]

      Yang, S., Wu, Z.H., Yang, W. and Yang, M.B., Polym. Test., 2008, 27(8):958

    23. [23]

      Ikada, Y., Jamshidi, K., Tsuji, H. and Hyon, S.H., Macromolecules, 1987, 20(4):904  doi: 10.1021/ma00170a034

    24. [24]

      Okihara, T., Tsuji, M., Kawaguchi, A., Katayama, K.I., Tsuji, H., Hyon, S.H. and Ikada, Y., J. Macromol. Sci., Part B:Phys., 1991, 30(1-2):119

    25. [25]

      Zhang, J., Sato, H., Tsuji, H., Noda, I. and Ozaki, Y., Macromolecules, 2005, 38(5):1822  doi: 10.1021/ma047872w

    26. [26]

      Fan, Y., Nishida, H., Shirai, Y., Tokiwa, Y. and Endo, T., Polym. Degrad. Stab., 2004, 86(2):197  doi: 10.1016/j.polymdegradstab.2004.03.001

    27. [27]

      Regnell Andersson, S., Hakkarainen, M., Inkinen, S., Södergård, A. and Albertsson, A.C., Biomacromolecules, 2012, 13(4):1212  doi: 10.1021/bm300196h

    28. [28]

      Tsuji, H., Macromol. Biosci., 2005, 5(7):569  doi: 10.1002/(ISSN)1616-5195

    29. [29]

      Cheerarot, O. and Baimark, Y., J. Chem., 2015, DOI:10.1155/2015/206123  doi: 10.1155/2015/206123

    30. [30]

      Wang, Y. and Mano, J.F., J. Appl. Polym. Sci., 2008, 107(3):1621  doi: 10.1002/(ISSN)1097-4628

    31. [31]

      Brochu, S., Prud'Homme, R.E., Barakat, I. and Jerome, R., Macromolecules, 1995, 28(15):5230  doi: 10.1021/ma00119a010

    32. [32]

      Furuhashi, Y., Kimura, Y., Yoshie, N. and Yamane, H., Polymer, 2006, 47(16):5965  doi: 10.1016/j.polymer.2006.06.001

    33. [33]

      Tsuji, H., Adv. Drug. Del. Rev., 2016, 107:97  doi: 10.1016/j.addr.2016.04.017

    34. [34]

      Inkinen, S., Stolt, M. and Södergård, A., Polym. Adv. Technol., 2011, 22(12):1658  doi: 10.1002/pat.v22.12

    35. [35]

      Shao, J., Sun, J., Bian, X., Cui, Y., Li, G. and Chen, X., J. Phys. Chem. B., 2012, 116(33):9983  doi: 10.1021/jp303402j

    36. [36]

      Biela, T., Duda, A. and Penczek, S., Macromolecules, 2006, 39(11):3710  doi: 10.1021/ma060264r

    37. [37]

      Nouri, S., Dubois, C. and Lafleur, P.G., Polymer, 2015, 67:228

    38. [38]

      Tan, B.H., Hussain, H., Lin, T.T., Chua, Y.C., Leong, Y.W., Tjiu, W.W., Wong, P.K. and He, C.B., Langmuir, 2011, 27(17):10538  doi: 10.1021/la202110w

    39. [39]

      Purnama, P., Jung, Y. and Kim, S.H., Polym. Degrad. Stab., 2013, 98(5):1097  doi: 10.1016/j.polymdegradstab.2013.02.010

    40. [40]

      Gardella, L., Basso, A., Prato, M. and Monticelli, O., RSC Adv., 2015, 5(58):46774  doi: 10.1039/C5RA05295E

    41. [41]

      Sakamoto, Y. and Tsuji, H., Macromol. Chem. Phys., 2013, 214(7):776  doi: 10.1002/macp.v214.7

    42. [42]

      Geschwind, J., Rathi, S., Tonhauser, C., Schömer, M., Hsu, S.L., Coughlin, E.B. and Frey, H., Macromol. Chem. Phys., 2013, 214(13):1434  doi: 10.1002/macp.v214.13

    43. [43]

      Nagahama, K., Nishimura, Y., Ohya, Y. and Ouchi, T., Polymer, 2007, 48(9):2649  doi: 10.1016/j.polymer.2007.03.017

    44. [44]

      Nagahama, K., Fujiura, K., Enami, S., Ouchi, T. and Ohya, Y., J. Polym. Sci., Part A:Polym. Chem., 2008, 46(18):6317  doi: 10.1002/pola.v46:18

    45. [45]

      Nederberg, F., Appel, E., Tan, J.P.K., Kim, S.H., Fukushima, K., Sly, J. and Hedrick, J.L., Biomacromolecules, 2009, 10(6):1460  doi: 10.1021/bm900056g

    46. [46]

      Shao, J., Tang, Z., Sun, J., Li, G. and Chen, X., J. Polym. Sci., Part B:Polym. Phys., 2014, 52(23):1560  doi: 10.1002/polb.23597

    47. [47]

      Tsuji, H., Matsumura, N. and Arakawa, Y., J. Phys. Chem. B., 2016, 120(6):1183  doi: 10.1021/acs.jpcb.5b11813

    48. [48]

      Tsuji, H. and Tajima, T., Macromol. Mater. Eng., 2014, 299(9):1089

    49. [49]

      Bao, J., Han, L., Shan, G., Bao, Y. and Pan, P., J. Phys. Chem. B., 2015, 119(39):12689  doi: 10.1021/acs.jpcb.5b05398

    50. [50]

      Long, L., Zhao, J., Li, K., He, L., Qian, X., Liu, C., Wang, L., Yang, X., Sun, J., Ren, Y., Kang, C. and Yuan, X., Mater. Chem. Phys., 2016, 180:184  doi: 10.1016/j.matchemphys.2016.05.062

    51. [51]

      Fischer, E.W., Sterzel, H.J. and Wegner, G., Colloid. Polym. Sci., 1973, 251(11):980

    52. [52]

      Tsuji, H., Horii, F., Nakagawa, M., Ikada, Y., Odani, H. and Kitamaru, R., Macromolecules, 1992, 25(16):4114  doi: 10.1021/ma00042a011

    53. [53]

      Routaray, A., Mantri, S., Nath, N., Sutar, A.K. and Maharana, T., Chinese Chem. Lett., 2016, 27(12):1763  doi: 10.1016/j.cclet.2016.06.011

    54. [54]

      Na, B., Zou, S. and Lv, R., J. Macromol. Sci., Part B:Phys., 2014, 53(1):162  doi: 10.1080/00222348.2013.808539

  • 加载中
    1. [1]

      Jun LuJinrui YanYaohao GuoJunjie QiuShuangliang ZhaoBo Bao . Controlling solid form and crystal habit of triphenylmethanol by antisolvent crystallization in a microfluidic device. Chinese Chemical Letters, 2024, 35(4): 108876-. doi: 10.1016/j.cclet.2023.108876

    2. [2]

      Xinyu LiuJialin YangZonglin HeJiaoyan AiLina SongBaohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236

    3. [3]

      Huiju CaoLei Shi . sp1-Hybridized linear and cyclic carbon chain. Chinese Chemical Letters, 2025, 36(4): 110466-. doi: 10.1016/j.cclet.2024.110466

    4. [4]

      Haitao YinLiang MengLi LiJiamu XiaoLongrui LiangNannan HuangYansong ShiAngang ZhaoJingwen Hou . Polydopamine-modified biochar supported polylactic acid and zero-valent iron affects the functional microbial community structure for 1,1,1-trichloroethane removal in simulated groundwater. Chinese Chemical Letters, 2025, 36(1): 110313-. doi: 10.1016/j.cclet.2024.110313

    5. [5]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    6. [6]

      Dongsheng YangZixin LiYaoyao LianZiyao FuTianjiao LiPengtao MaGuoping Yang . A novel square-shaped Zr-substituted polyoxotungstate for the efficient catalytic oxidation of sulfide to sulfone. Chinese Chemical Letters, 2025, 36(3): 109717-. doi: 10.1016/j.cclet.2024.109717

    7. [7]

      Jing GuoZhi-Guo LuRui-Chen ZhaoBao-Ku LiXin Zhang . Nucleic acid therapy for metabolic-related diseases. Chinese Chemical Letters, 2025, 36(3): 109875-. doi: 10.1016/j.cclet.2024.109875

    8. [8]

      Wen-Jun XiaYong-Jiang WangYun-Fei CaoCai SunXin-Xiong LiYan-Qiong SunShou-Tian Zheng . A luminescent folded S-shaped high-nuclearity Eu19-oxo-cluster embedded polyoxoniobate for information encryption. Chinese Chemical Letters, 2025, 36(2): 110248-. doi: 10.1016/j.cclet.2024.110248

    9. [9]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    10. [10]

      Huipeng Zhao Xiaoqiang Du . Polyoxometalates as the redox anolyte for efficient conversion of biomass to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(2): 100246-100246. doi: 10.1016/j.cjsc.2024.100246

    11. [11]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

    12. [12]

      Lihang WangMary Li JavierChunshan LuoTingsheng LuShudan YaoBing QiuYun WangYunfeng Lin . Research advances of tetrahedral framework nucleic acid-based systems in biomedicine. Chinese Chemical Letters, 2024, 35(11): 109591-. doi: 10.1016/j.cclet.2024.109591

    13. [13]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    14. [14]

      Linshan PengQihang PengTianxiang JinZhirong LiuYong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891

    15. [15]

      Yingying YanWanhe JiaRui CaiChun Liu . An AIPE-active fluorinated cationic Pt(Ⅱ) complex for efficient detection of picric acid in aqueous media. Chinese Chemical Letters, 2024, 35(5): 108819-. doi: 10.1016/j.cclet.2023.108819

    16. [16]

      Fengyun LiZerong PeiShuting ChenGen liMengyang LiuLiqin DingJingbo LiuFeng Qiu . Multifunctional nano-herb based on tumor microenvironment for enhanced tumor therapy of gambogic acid. Chinese Chemical Letters, 2024, 35(5): 108752-. doi: 10.1016/j.cclet.2023.108752

    17. [17]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    18. [18]

      Peizhe LiQiaoling LiuMengyu PeiYuci GanYan GongChuchen GongPei WangMingsong WangXiansong WangDa-Peng YangBo LiangGuangyu Ji . Chlorogenic acid supported strontium polyphenol networks ensemble microneedle patch to promote diabetic wound healing. Chinese Chemical Letters, 2024, 35(8): 109457-. doi: 10.1016/j.cclet.2023.109457

    19. [19]

      Yuanjiao LiuXiaoyang ZhaoSongyao ZhangYi WangYutuo ZhengXinrui MiaoWenli Deng . Site-selection and recognition of aromatic carboxylic acid in response to coronene and pyridine derivative. Chinese Chemical Letters, 2024, 35(8): 109404-. doi: 10.1016/j.cclet.2023.109404

    20. [20]

      Shiyu PanBo CaoDeling YuanTifeng JiaoQingrui ZhangShoufeng Tang . Complexes of cupric ion and tartaric acid enhanced calcium peroxide Fenton-like reaction for metronidazole degradation. Chinese Chemical Letters, 2024, 35(7): 109185-. doi: 10.1016/j.cclet.2023.109185

Metrics
  • PDF Downloads(0)
  • Abstract views(746)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return