Citation: Dan Zhao, Xiao-dong Xu, Shuai-shuai Yuan, Shun-jie Yan, Xiang-hong Wang, Shi-fang Luan, Jing-hua Yin. Fouling-resistant Behavior of Liquid-infused Porous Slippery Surfaces[J]. Chinese Journal of Polymer Science, ;2017, 35(7): 887-896. doi: 10.1007/s10118-017-1930-9 shu

Fouling-resistant Behavior of Liquid-infused Porous Slippery Surfaces

  • Corresponding author: Xiao-dong Xu, xuxiaodong@hrbeu.edu.cn Shuai-shuai Yuan, ssyuan@qust.edu.cn Shi-fang Luan, sfluan@ciac.ac.cn
  • Received Date: 5 December 2016
    Revised Date: 23 December 2016
    Accepted Date: 28 December 2016

    Fund Project: China Postdoctoral Science Foundation No. 2016M602106the National Natural Science Foundation of China No. 51473167the Natural Science Foundation of Heilongjiang Province of China No. E201419

  • Marine economy is seriously affected by marine biofouling, which has plagued people for thousands of years. Although various strategies have been developed to protect artificial surfaces against marine biofouling, cost-effective biofouling-resistant coating is still a goal in pursue. Herein, a cost-effective liquid-infused porous slippery surface (LIPSS) was facilely prepared by using poly(styrene-b-(ethylene-co-butylene)-b-styrene) (SEBS) elastomer to form microsphere surfaces, followed by infusing fluorocarbon lubricants into the porous structure. The as-prepared slippery surfaces were characterized by static water contact angle, sliding velocity and sliding angle analysis. We also investigated the adhesion behavior of Escherichia coli (E. coli) and limnetic algae on different surfaces. It is confirmed that the slippery surfaces have better anti-biofouling properties than the porous SEBS reference. This cost-effective approach is feasible and easily produced, and may potentially be used as fouling-resistant surfaces.
  • 加载中
    1. [1]

      Callow, J.A. and Callow, M.E., Nat. Commun., 2011, 2(1): 803

    2. [2]

      Priyanka, P., Arun, A.B., Young, C.C. and Rekha, P.D., Chinese J. Polym. Sci., 2015, 33(2): 236  doi: 10.1007/s10118-015-1581-7

    3. [3]

      Lundberg, P., Bruin, A., Klijnstra, J.W., Nystrom, A.M., Johansson, M., Malkoch, M. and Hult, A., ACS Appl. Mater. Interfaces, 2010, 2(3): 903  doi: 10.1021/am900875g

    4. [4]

      Ren, J., Han, P.P., Wei, H.L. and Jia, L.Y., ACS Appl. Mater. Interfaces, 2014, 6(6): 3829  doi: 10.1021/am500292y

    5. [5]

      Chambers, L.D., Stokes, K.R., Walsh, F.C. and Wood, R.J.K., Surf. Coat. Technol., 2006, 201(6): 3642  doi: 10.1016/j.surfcoat.2006.08.129

    6. [6]

      Inbakandan, D., Kumar, C., Abraham, L.S., Kirubagaran, R., Venkatesan, R. and Khan, S.A., Colloid. Surface. B, 2013, 111: 636  doi: 10.1016/j.colsurfb.2013.06.048

    7. [7]

      Chen, C.L., Maki, J.S., Rittschof, D. and Teo, S.L.M., Int. Biodeterior. Biodegrad., 2013, 83(6): 71

    8. [8]

      Banerjee, I., Pangule, R.C. and Kane, R.S., Adv. Mater., 2011, 23(6): 690  doi: 10.1002/adma.201001215

    9. [9]

      Yang, W.J., Neoh, K.G., Kang, E.T., Teo, S.L.M. and Rittschof, D., Prog. Polym. Sci., 2014, 39(5): 1017  doi: 10.1016/j.progpolymsci.2014.02.002

    10. [10]

      Qian, P.Y., Xu, Y. and Fusetani, N., Biofouling, 2010, 26(2): 223

    11. [11]

      Krishnan, S., Weinman, C.J. and Ober, C.K., J. Mater. Chem., 2008, 18(29): 3405  doi: 10.1039/b801491d

    12. [12]

      Sundaram, H.S., Cho, Y.J., Dimitriou, M.D., Weinman, C.J., Finlay, J.A., Cone, G., Callow, M.E., Callow, J.A., Kramer, E.J. and Ober, C.K., Biofouling, 2011, 27(6): 589  doi: 10.1080/08927014.2011.587662

    13. [13]

      Bartels, J.W., Imbesi, P.M., Finlay, J.A., Fidge, C., Ma, J., Seppala, J.E., Nystrom, A.M., Mackay, M.E., Callow, J.A., Callow, M.E. and Wooley, K.L., ACS Appl. Mater. Interfaces, 2011, 3(6): 2118  doi: 10.1021/am200337q

    14. [14]

      Youngblood, J.P., Andruzzi, L., Ober, C.K., Hexemer, A., Kramer, E.J., Callow, J.A., Finlay, J.A. and Callow, M.E., Biofouling, 2003, 19(1): 91

    15. [15]

      Zhang, Z., Finlay, J.A., Wang, L.F., Gao, Y., Callow, J.A., Callow, M.E. and Jiang, S.Y., Langmuir, 2009, 25(23): 13516  doi: 10.1021/la901957k

    16. [16]

      Weinman, C.J., Finlay, J.A., Park, D., Paik, M.Y., Krishnan, S., Sundaram, H.S., Dimitriou, M., Sohn, K.E., Callow, M.E., Callow, J.A., Handlin, D.L., Willis, C.L., Kramer, E.J. and Ober, C.K., Langmuir, 2009, 25(20): 12266  doi: 10.1021/la901654q

    17. [17]

      Li, J.H., Wang S.S., Zhang, D.B., Ni, X.X. and Zhang, Q.Q., Chinese J. Polym. Sci., 2016, 34(7): 805  doi: 10.1007/s10118-016-1808-2

    18. [18]

      Zhou, Q., Li, J.H., Yan, B.F., Wu, D. and Zhang, Q.Q., Chinese J. Polym. Sci., 2014, 32(7): 892  doi: 10.1007/s10118-014-1457-2

    19. [19]

      Carman, M.L., Estes, T.G., Feinberg, A.W., Schumacher, J.F., Wilkerson, W., Wilson, L.H., Callow, M.E., Callow, J.A. and Brennan, A.B., Biofouling, 2006, 22(1): 11  doi: 10.1080/08927010500484854

    20. [20]

      Long, C.J., Schumacher, J.F., Robinson, P.A.C., Finlay, J.A., Callow, M.E., Callow, J.A. and Brennan, A.B., Biofouling, 2010, 26(4): 411  doi: 10.1080/08927011003628849

    21. [21]

      Scardino, A.J. and de Nys, R., Biofouling, 2011, 27(1): 73  doi: 10.1080/08927014.2010.536837

    22. [22]

      Wong, T.S., Kang, S.H., Tang, S.K.Y., Smythe, E.J., Hatton, B.D., Grinthal, A. and Aizenberg, J., Nature, 2011, 477(7365): 443  doi: 10.1038/nature10447

    23. [23]

      Yao, X., Hu, Y.H., Grinthal, A., Wong, T.S., Mahadevan, L. and Aizenberg, J., Nat. Mater., 2013, 12(6): 529  doi: 10.1038/nmat3598

    24. [24]

      Leslie, D.C., Waterhouse, A., Berthet, J.B., Valentin, T.M., Watters, A.L., Jain, A., Kim, P., Hatton, B.D., Nedder, A., Donovan, K., Super, E.H., Howell, C., Johnson, C.P., Vu, T.L., Bolgen, D.E., Rifai, S., Hansen, A.R., Aizenberg, M., Super, M., Aizenberg, J. and Ingber, D.E., Nat. Biotechnol., 2014, 32(11): 1134  doi: 10.1038/nbt.3020

    25. [25]

      Yuan, S.S., Luan, S.F., Yan, S.J., Shi, H.C. and Yin, J.H., ACS Appl. Mater. Interfaces, 2015, 7(34): 19466  doi: 10.1021/acsami.5b05865

    26. [26]

      Yuan, S.S., Li, Z.B., Song, L.J., Shi, H.C., Luan, S.F. and Yin, J.H., ACS Appl. Mater. Interfaces, 2016, 8(33): 21214  doi: 10.1021/acsami.6b06407

    27. [27]

      Epstein, A.K., Wong, T.S., Belisle, R.A., Boggs, E.M. and Aizenberg, J., Proc. Natl. Acad. Sci. U.S.A., 2012, 109(33): 13182  doi: 10.1073/pnas.1201973109

    28. [28]

      Li, J.S., Kleintschek, T., Rieder, A., Cheng, Y., Baumbach, T., Obst, U., Schwartz, T. and Levkin, P.A., ACS Appl. Mater. Interfaces, 2013, 5(14): 6704  doi: 10.1021/am401532z

    29. [29]

      Xiao, L.L., Li, J.S., Mieszkin, S., di Fino, A., Clare, A.S., Callow, M.E., Callow, J.A., Grunze, M., Rosenhahn, A. and Levkin, P.A., ACS Appl. Mater. Interfaces, 2013, 5(20): 10074  doi: 10.1021/am402635p

    30. [30]

      Ye, W., Shi, Q., Hou, J.W., Jin, J., Fan, Q.F., Wong, S.C., Xu, X.D. and Yin, J.H., J. Mater. Chem. B, 2014, 2(41): 7186  doi: 10.1039/C4TB01126K

    31. [31]

      Dimitriou, M.D., Sundaram, H.S., Cho, Y.J., Paik, M.Y., Kondo, M., Schmidt, K., Fischer, D.A., Ober, C.K. and Kramer, E.J., Polymer, 2012, 53(6): 1321  doi: 10.1016/j.polymer.2011.12.055

    32. [32]

      Cho, Y.J., Sundaram, H.S., Weinman, C.J., Paik, M.Y., Dimitriou, M.D., Finlay, J.A., Callow, M.E., Callow, J.A., Kramer, E.J. and Ober, C.K., Macromolecules, 2011, 44(12): 4783  doi: 10.1021/ma200269s

    33. [33]

      Chen, Y.Y., Liu, Z.X., Han, S., Han, J. and Jiang, D.Y., J. Appl. Polym. Sci., 2016, 133(28): 43667

  • 加载中
    1. [1]

      Jing ZhangCharles WangYaoyao ZhangHaining XiaYujuan WangKun MaJunfeng Wang . Application of magnetotactic bacteria as engineering microrobots: Higher delivery efficiency of antitumor medicine. Chinese Chemical Letters, 2024, 35(10): 109420-. doi: 10.1016/j.cclet.2023.109420

    2. [2]

      Wenhao YanShuaiya XueXuerui ZhaoWei ZhangJian Li . Hexagonal boron nitride based slippery liquid infused porous surface with anti-corrosion, anti-contaminant and anti-icing properties for protecting magnesium alloy. Chinese Chemical Letters, 2024, 35(4): 109224-. doi: 10.1016/j.cclet.2023.109224

    3. [3]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    4. [4]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    5. [5]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

    6. [6]

      Zixuan GuoXiaoshuai HanChunmei ZhangShuijian HeKunming LiuJiapeng HuWeisen YangShaoju JianShaohua JiangGaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007

    7. [7]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    8. [8]

      Peng ZhouZiang JiangYang LiPeng XiaoFeixiang Wu . Sulphur-template method for facile manufacturing porous silicon electrodes with enhanced electrochemical performance. Chinese Chemical Letters, 2024, 35(8): 109467-. doi: 10.1016/j.cclet.2023.109467

    9. [9]

      Yuchen WangYaoyu LiuXiongfei HuangGuanjie HeKai Yan . Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(8): 109301-. doi: 10.1016/j.cclet.2023.109301

    10. [10]

      Xiaxia XingXiaoyu ChenZhenxu LiXinhua ZhaoYingying TianXiaoyan LangDachi Yang . Polyethylene imine functionalized porous carbon framework for selective nitrogen dioxide sensing with smartphone communication. Chinese Chemical Letters, 2024, 35(9): 109230-. doi: 10.1016/j.cclet.2023.109230

    11. [11]

      Xinyi CaoYucheng JinHailong WangXu DingXiaolin LiuBaoqiu YuXiaoning ZhanJianzhuang Jiang . A tetraaldehyde-derived porous organic cage and covalent organic frameworks: Syntheses, structures, and iodine vapor capture. Chinese Chemical Letters, 2024, 35(9): 109201-. doi: 10.1016/j.cclet.2023.109201

    12. [12]

      Si-Hua Liu Jun-Hao Zhou Jian-Ke Sun . Interconnecting zero-dimensional porous organic cages into sub-8 nm nanofilm for bio-inspired separation. Chinese Journal of Structural Chemistry, 2024, 43(7): 100312-100312. doi: 10.1016/j.cjsc.2024.100312

    13. [13]

      Zeyu XUTongzhou LUHaibo SHAOJianming WANG . Preparation and electrochemical lithium storage performance of porous silicon microsphere composite with metal modification and carbon coating. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1995-2008. doi: 10.11862/CJIC.20240164

    14. [14]

      Ya SongMingxia ZhouZhu ChenHuali NieJiao-Jing ShaoGuangmin Zhou . Integrated interconnected porous and lamellar structures realized fast ion/electron conductivity in high-performance lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(6): 109200-. doi: 10.1016/j.cclet.2023.109200

    15. [15]

      Yuting Wu Haifeng Lv Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375

Metrics
  • PDF Downloads(0)
  • Abstract views(612)
  • HTML views(46)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return