Citation: Huang Zhi-hao, Zhou Yan-yan, Wang Zi-mu, Li Ying, Zhang Wei, Zhou Nian-chen, Zhang Zheng-biao, Zhu Xiu-lin. Recent Advances of CuAAC Click Reaction in Building Cyclic Polymer[J]. Chinese Journal of Polymer Science, ;2017, 35(3): 317-341. doi: 10.1007/s10118-017-1902-0 shu

Recent Advances of CuAAC Click Reaction in Building Cyclic Polymer

  • Corresponding author: Zhang Zheng-biao, zhangzhengbiao@suda.edu.cn Zhu Xiu-lin, xlzhu@suda.edu.cn
  • Received Date: 5 September 2016
    Revised Date: 28 September 2016
    Accepted Date: 28 September 2016

    Fund Project: the National Natural Science Foundation of China 21234005the State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and the Program of Innovative Research Team of Soochow University  

  • Cyclic polymers have attracted more and more attentions in recent years because of their unique topological structures and characteristic properties in both solution and bulk state. There are relatively few reports on cyclic polymers, partly because of the more demanding synthetic procedures. In recent years, "click" reaction, especially Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC), has been widely utilized in the synthesis of cyclic polymer materials because of its high efficiency and low susceptibility to side reactions. In this review, we will focus on three aspects:(1) Constructions of monocyclic polymer using CuAAC "click" chemistry; (2) Formation of complex cyclic polymer topologies through CuAAC reactions; (3) Using CuAAC "click" reaction in the precise synthesis of molecularly defined macrocycles. We believe that the CuAAC click reaction is playing an important role in the design and synthesis of functional cyclic polymers.
  • 加载中
    1. [1]

      Kricheldorf, H.R., J. Polym. Sci., Part A: Polym. Chem., 2010, 48(2): 251  doi: 10.1002/pola.v48:2

    2. [2]

      2 Laurent, B.A. and Grayson, S.M., Chem. Soc. Rev., 2009, 38(8): 2202

    3. [3]

      Tomikawa, Y., Fukata, H., Ko, Y.S., Yamamoto, T. and Tezuka, Y., Macromolecules, 2014, 47(23): 8214

    4. [4]

      4 Hossain, M.D., Jia, Z. and Monteiro, M.J., Macromolecules, 2014, 47(15): 4955

    5. [5]

      Tezuka, Y., Polym. J., 2012, 44(12): 1159  doi: 10.1038/pj.2012.92

    6. [6]

      Jia, Z. and Monteiro, M.J., J. Polym. Sci., Part A: Polym. Chem., 2012, 50(11): 2085  doi: 10.1002/pola.v50.11

    7. [7]

      Yamamoto, T. and Tezuka, Y., Polym. Chem., 2011, 2(9): 1930  doi: 10.1039/c1py00088h

    8. [8]

      Schappacher, M. and Deffieux, A., Science, 2008, 319(5869): 1512  doi: 10.1126/science.1153848

    9. [9]

      Coulembier, O., Moins, S.B., de Winter, J., Gerbaux, P., Leclère, P., Lazzaroni, R. and Dubois, P., Macromolecules,2010, 43(1): 575  doi: 10.1021/ma901938j

    10. [10]

      Chen, R., Ling, J. and Hogen-Esch, T.E., Macromolecules, 2009, 42(16): 6015  doi: 10.1021/ma9005186

    11. [11]

      Quirk, R.P., Wang, S.F., Foster, M.D., Wesdemiotis, C. and Yol, A.M., Macromolecules, 2011, 44(19): 7538  doi: 10.1021/ma200931n

    12. [12]

      Shin, E.J., Brown, H.A., Gonzalez, S., Jeong, W., Hedrick, J.L. and Waymouth, R.M., Angew. Chem. Int. Ed. Eng.,2011, 50(28): 6388  doi: 10.1002/anie.201101853

    13. [13]

      Zhang, K., Lackey, M.A., Cui, J. and Tew, G.N., J. Am. Chem. Soc., 2011, 133(11): 4140  doi: 10.1021/ja111391z

    14. [14]

      Qin, L., He, X.W., Yuan, X., Li, W.Y. and Zhang, Y.K., Anal. Bioanal. Chem., 2011, 399(10): 3375  doi: 10.1007/s00216-011-4736-6

    15. [15]

      Wan, X., Liu, T. and Liu, S., Biomacromolecules, 2011, 12(4): 1146  doi: 10.1021/bm101463d

    16. [16]

      Wei, H., Chu, D.S., Zhao, J., Pahang, J.A. and Pun, S.H., ACS Macro Lett., 2013, 2(12):

    17. [17]

      Zhang, B., Zhang, H., Li, Y., Hoskins, J.N. and Grayson, S.M., ACS Macro Lett., 2013, 2(10): 845  doi: 10.1021/mz4003936

    18. [18]

      Chen, B., Jerger, K., Frechet, J.M. and Szoka, F.C., J. Control. Release, 2009, 140(3): 203  doi: 10.1016/j.jconrel.2009.05.021

    19. [19]

      Cortez, M.A., Godbey, W.T., Fang, Y., Payne, M.E., Cafferty, B.J., Kosakowska, K.A. and Grayson, S.M., J. Am. Chem.Soc., 2015, 137(20): 6541  doi: 10.1021/jacs.5b00980

    20. [20]

      Laurent, B. and Grayson, S., J. Am. Chem. Soc., 2006, 128(13): 4238  doi: 10.1021/ja0585836

    21. [21]

      Nicolaÿ, R. and Matyjaszewski, K., Macromolecules, 2011, 44(2): 240  doi: 10.1021/ma102313q

    22. [22]

      Jeong, W., Hedrick, J.L. and Waymouth, R.M., J. Am. Chem. Soc., 2007, 129(27): 8414  doi: 10.1021/ja072037q

    23. [23]

      Boydston, A.J., Holcombe, T.W., Unruh, D.A., Fréchet, J.M. and Grubbs, R.H., J. Am. Chem. Soc., 2009, 131(15): 5388  doi: 10.1021/ja901658c

    24. [24]

      Oike, H., Imaizumi, H., Mouri, T., Yoshioka, Y., Uchibori, A. and Tezuka, Y., J. Am. Chem. Soc., 2000, 122(40): 9592  doi: 10.1021/ja001736z

    25. [25]

      Lonsdale, D.E. and Monteiro, M.J., Chem. Commun., 2010, 46(42): 7945  doi: 10.1039/c0cc02904a

    26. [26]

      Honda, S., Yamamoto, T. and Tezuka, Y., J. Am. Chem. Soc., 2010, 132(30): 10251  doi: 10.1021/ja104691j

    27. [27]

      Kolb, H.C., Finn, M. and Sharpless, K.B., Angew. Chem. Int. Ed., 2001, 40(11): 2004  doi: 10.1002/(ISSN)1521-3773

    28. [28]

      Matyjaszewski, K. and Xia, J., Chem. Rev., 2001, 101(9): 2921  doi: 10.1021/cr940534g

    29. [29]

      Chiefari, J., Chong, Y., Ercole, F., Krstina, J., Jeffery, J., Le, T.P., Mayadunne, R.T., Meijs, G.F., Moad, C.L. and Moad, G., Macromolecules, 1998, 31(16): 5559  doi: 10.1021/ma9804951

    30. [30]

      Hawker, C.J., Bosman, A.W. and Harth, E., Chem. Rev., 2001, 101(12): 3661  doi: 10.1021/cr990119u

    31. [31]

      Rosen, B.M. and Percec, V., Chem. Rev., 2009, 109(11): 5069  doi: 10.1021/cr900024j

    32. [32]

      Percec, V., Guliashvili, T., Ladislaw, J.S., Wistrand, A., Stjerndahl, A., Sienkowska, M.J., Monteiro, M.J. and Sahoo, S.,J. Am. Chem. Soc., 2006, 128(43): 14156  doi: 10.1021/ja065484z

    33. [33]

      Matyjaszewski, K. and Tsarevsky, N.V., Nat. Chem., 2009, 1(4): 276  doi: 10.1038/nchem.257

    34. [34]

      Sumerlin, B.S. and Vogt, A.P., Macromolecules, 2010, 43(1): 1  doi: 10.1021/ma901447e

    35. [35]

      Hadjichristidis, N., Iatrou, H., Pitsikalis, M. and Mays, J., Prog. Polym. Sci., 2006, 31(12): 1068  doi: 10.1016/j.progpolymsci.2006.07.002

    36. [36]

      Qiu, X.P., Tanaka, F. and Winnik, F.M., Macromolecules, 2007, 40(20): 7069  doi: 10.1021/ma071359b

    37. [37]

      Shi, G.Y., Tang, X.Z. and Pan, C.Y., J. Polym. Sci., Part A: Polym. Chem., 2008, 46(7): 2390  doi: 10.1002/pola.v46:7

    38. [38]

      Zhou, F., Li, Y., Jiang, G., Zhang, Z., Tu, Y., Chen, X., Zhou, N. and Zhu, X., Polym. Chem., 2015, 6(38): 6885  doi: 10.1039/C5PY01003A

    39. [39]

      Zhou, F., Zhang, Z., Jiang, G., Lu, J., Chen, X., Li, Y., Zhou, N. and Zhu, X., Polym. Chem., 2016, 7(16): 2785  doi: 10.1039/C6PY00545D

    40. [40]

      Shi, G.Y. and Pan, C.Y., Macromol. Rapid Commun., 2008, 29(20): 1672  doi: 10.1002/marc.v29:20

    41. [41]

      Lonsdale, D.E., Bell, C.A. and Monteiro, M.J., Macromolecules, 2010, 43(7): 3331  doi: 10.1021/ma902597p

    42. [42]

      Ge, Z., Zhou, Y., Xu, J., Liu, H., Chen, D. and Liu, S., J. Am. Chem. Soc., 2009, 131(5): 1628  doi: 10.1021/ja808772z

    43. [43]

      Zhu, X., Zhou, N., Zhang, Z., Sun, B., Yang, Y., Zhu, J. and Zhu, X., Angew. Chem., 2011, 50(29): 6615  doi: 10.1002/anie.v50.29

    44. [44]

      Eugene, D.M. and Grayson, S.M., Macromolecules, 2008, 41(14): 5082  doi: 10.1021/ma800962z

    45. [45]

      Gibbons, W.M., Shannon, P.J., Sun, S.T. and Swetlin, B.J., Nature, 1991, 351(6321):49  doi: 10.1038/351049a0

    46. [46]

      Delaire, J.A. and Nakatani, K., Chem. Rev., 2000, 100(5): 1817  doi: 10.1021/cr980078m

    47. [47]

      Barrett, C.J., Mamiya, J.I., Yager, K.G. and Ikeda, T., Soft Matter, 2007, 3(10): 1249  doi: 10.1039/b705619b

    48. [48]

      Wang, D., Ye, G., Zhu, Y. and Wang, X., Macromolecules, 2009, 42(7): 2651  doi: 10.1021/ma8026063

    49. [49]

      Pedersen, T.G., Johansen, P.M. and Pedersen, H.C., J. Opt. A-Pure. Appl. Op.,2000, 2(4): 272  doi: 10.1088/1464-4258/2/4/305

    50. [50]

      He, X., Zhang, H., Yan, D. and Wang, X., J. Polym. Sci., Part A: Polym. Chem., 2003, 41(18): 2854  doi: 10.1002/(ISSN)1099-0518

    51. [51]

      Rasmussen, P.H., Ramanujam, P., Hvilsted, S. and Berg, R.H., J. Am. Chem. Soc., 1999, 121(20): 4738  doi: 10.1021/ja981402y

    52. [52]

      Rochon, P., Batalla, E. and Natansohn, A., Appl. Phys. Lett., 1995, 66(2): 136  doi: 10.1063/1.113541

    53. [53]

      Han, D., Tong, X., Zhao, Y., Galstian, T. and Zhao, Y., Macromolecules, 2010, 43(8): 3664  doi: 10.1021/ma100246c

    54. [54]

      Cai, Y., Lu, J., Zhou, F., Zhou, X., Zhou, N., Zhang, Z. and Zhu, X., Macromol. Rapid Commun., 2014, 35(9): 901  doi: 10.1002/marc.v35.9

    55. [55]

      Poelma, J.E., Ono, K., Miyajima, D., Aida, T., Satoh, K. and Hawker, C.J., ACS Nano, 2012, 6(12): 10845  doi: 10.1021/nn304217y

    56. [56]

      Zhang, B., Zhang, H., Elupula, R., Alb, A.M. and Grayson, S.M., Macromol. Rapid Commun., 2014, 35(2): 146  doi: 10.1002/marc.201300623

    57. [57]

      Igari, M., Heguri, H., Yamamoto, T. and Tezuka, Y., Macromolecules, 2013, 46(18): 7303  doi: 10.1021/ma401394t

    58. [58]

      Tezuka, Y., Tsuchitani, A., Yoshioka, Y. and Oike, H., Macromolecules, 2003, 36(1): 65  doi: 10.1021/ma0209850

    59. [59]

      Sugai, N., Heguri, H., Ohta, K., Meng, Q., Yamamoto, T. and Tezuka, Y., J. Am. Chem. Soc., 2010, 132(42): 14790  doi: 10.1021/ja103402c

    60. [60]

      Ko, Y.S., Yamamoto, T. and Tezuka, Y., Macromol. Rapid Commun., 2014, 35(4): 412  doi: 10.1002/marc.v35.4

    61. [61]

      Dong, Y.Q., Tong, Y.Y., Dong, B.T., Du, F.S. and Li, Z.C., Macromolecules, 2009, 42(8): 2940  doi: 10.1021/ma802361h

    62. [62]

      Lonsdale, D.E. and Monteiro, M.J., J. Polym. Sci., Part A: Polym. Chem., 2011, 49(21): 4603  doi: 10.1002/pola.v49.21

    63. [63]

      Fan, X., Wang, G. and Huang, J., J. Polym. Sci., Part A: Polym. Chem., 2011, 49(6): 1361  doi: 10.1002/pola.24555

    64. [64]

      Jeong, J., Kim, K., Lee, R., Lee, S., Kim, H., Jung, H., Kadir, M.A., Jang, Y., Jeon, H.B., Matyjaszewski, K., Chang, T. and Paik, H.J., Macromolecules, 2014, 47(12): 3791  doi: 10.1021/ma500391z

    65. [65]

      Jia, Z., Lonsdale, D.E., Kulis, J. and Monteiro, M.J., ACS Macro Lett., 2012, 1(6): 780  doi: 10.1021/mz300259v

    66. [66]

      Shi, G.Y. and Pan, C.Y., J. Polym. Sci., Part A: Polym. Chem., 2009, 47(10): 2620  doi: 10.1002/pola.v47:10

    67. [67]

      Shi, G.Y., Sun, J.T. and Pan, C.Y., Macromol. Chem. Phys., 2011, 212(12): 1305  doi: 10.1002/macp.v212.12

    68. [68]

      Ge, Z., Wang, D., Zhou, Y., Liu, H. and Liu, S., Macromolecules, 2009, 42(8): 2903  doi: 10.1021/ma802585k

    69. [69]

      Peng, Y., Liu, H., Zhang, X., Liu, S. and Li, Y., Macromolecules, 2009, 42(17): 6457  doi: 10.1021/ma901041x

    70. [70]

      Kulis, J., Jia, Z. and Monteiro, M.J., Macromolecules, 2012, 45(15): 5956  doi: 10.1021/ma301296w

    71. [71]

      Sugai, N., Heguri, H., Yamamoto, T. and Tezuka, Y., J. Am. Chem. Soc., 2011, 133(49): 19694  doi: 10.1021/ja209394m

    72. [72]

      Tomikawa, Y., Yamamoto, T. and Tezuka, Y., Macromolecules, 2016, 49(11): 4076  doi: 10.1021/acs.macromol.6b00637

    73. [73]

      Lin, Z., Lu, P., Yu, X., Zhang, W.B., Huang, M., Wu, K., Guo, K., Wesdemiotis, C., Zhu, X., Zhang, Z., Yue, K. and Cheng, S.Z.D., Macromolecules, 2014, 47(13): 4160  doi: 10.1021/ma500696h

    74. [74]

      Li, Y., Su, H., Feng, X., Yue, K., Wang, Z., Lin, Z., Zhu, X., Fu, Q., Zhang, Z., Cheng, S.Z.D. and Zhang, W.B., Polym.Chem., 2015, 6(5): 827  doi: 10.1039/C4PY01360C

    75. [75]

      Zhao, J., Zhou, Y., Li, Y., Pan, X., Zhang, W., Zhou, N., Zhang, K., Zhang, Z. and Zhu, X., Polym. Chem.,2015, 6(15): 2879  doi: 10.1039/C5PY00174A

    76. [76]

      Wang, Y., Zhang, S., Wang, L., Zhang, W., Zhou, N., Zhang, Z. and Zhu, X., Polym. Chem., 2015, 6(25): 4669  doi: 10.1039/C5PY00551E

    77. [77]

      Zhang, S., Yin, L., Zhang, W., Zhang, Z. and Zhu, X., Polym. Chem., 2016, 7(11): 2112  doi: 10.1039/C6PY00012F

    78. [78]

      Schmidt, B.V.K.J., Fechler, N., Falkenhagen, J. and Lutz, J.F., Nat. Chem., 2011, 3(3): 234

    79. [79]

      Merrifield, R.B., J. Am. Chem. Soc., 1963, 85(14): 2149  doi: 10.1021/ja00897a025

    80. [80]

      Merrifield, R.B., Angew. Chem. Int. Ed., 1985, 24(10): 799  doi: 10.1002/(ISSN)1521-3773

    81. [81]

      Gothard, C.M., Rao, N.A. and Nowick, J.S., J. Am. Chem. Soc., 2007, 129(23): 7272  doi: 10.1021/ja072648i

    82. [82]

      Pfeifer, S., Zarafshani, Z., Badi, N. and Lutz, J.F., J. Am. Chem. Soc., 2009, 131(26): 9195  doi: 10.1021/ja903635y

    83. [83]

      Duvigneaud, V., Ressler, C., Swan, J.M., Roberts, C.W., Katsoyannis, P.G. and Gordon, S., J. Am. Chem. Soc., 1953,75(19): 4879  doi: 10.1021/ja01115a553

    84. [84]

      Muthana, S., Yu, H., Cao, H.Z., Cheng, J.S. and Chen, X., J. Org. Chem, 2009, 74(8): 2928  doi: 10.1021/jo8027856

    85. [85]

      Lu, G.L., Lam, S. and Burgess, K., Chem. Commun., 2006, (15): 1652  doi: 10.1039/b518061a

    86. [86]

      Montagnat, O.D., Lessene, G. and Hughes, A.B., Tetrahedron Lett., 2006, 47(39): 6971  doi: 10.1016/j.tetlet.2006.07.131

    87. [87]

      Angelo, N.G. and Arora, P.S., J. Am. Chem. Soc., 2005, 127(49): 17134  doi: 10.1021/ja056406z

    88. [88]

      Paynter, O.I., Simmonds, D.J. and Whiting, M.C., J. Chem. Soc., Chem. Commun.,1982, (20): 1165  doi: 10.1039/c39820001165

    89. [89]

      Bidd, I. and Whiting, M.C., J. Chem. Soc., Chem. Commun., 1985,(9): 543  doi: 10.1039/c39850000543

    90. [90]

      Tomalia, D.A., Naylor, A.M. and Goddard, W.A., Angew. Chem. Int. Ed., 1990, 29(2): 138  doi: 10.1002/(ISSN)1521-3773

    91. [91]

      Zhang, J., Moore, J.S., Xu, Z. and Aguirre, R.A., J. Am. Chem. Soc., 1992, 114(6): 2273  doi: 10.1021/ja00032a060

    92. [92]

      Schumm, J.S., Pearson, D.L. and Tour, J.M., Angew. Chem. Int. Ed., 1994, 33(13): 1360  doi: 10.1002/anie.199413601

    93. [93]

      Hawker, C.J., Malmstrom, E.E., Frank, C.W. and Kampf, J.P., J. Am. Chem. Soc., 1997, 119(41): 9903  doi: 10.1021/ja972027x

    94. [94]

      Percec, V. and Asandei, A.D., Macromolecules, 1997, 30(25): 7701  doi: 10.1021/ma970783h

    95. [95]

      Sadighi, J.P., Singer, R.A. and Buchwald, S.L., J. Am. Chem. Soc., 1998, 120(20): 4960  doi: 10.1021/ja980052c

    96. [96]

      Louie, J. and Hartwig, J.F., Macromolecules, 1998, 31(19): 6737  doi: 10.1021/ma981073u

    97. [97]

      Martin, R.E. and Diederich, F., Angew. Chem. Int. Ed., 1999, 38(10): 1350  doi: 10.1002/(ISSN)1521-3773

    98. [98]

      Brooke, G.M., MacBride, J.A.H., Mohammed, S. and Whiting, M.C., Polymer, 2000, 41(17): 6457  doi: 10.1016/S0032-3861(99)00875-7

    99. [99]

      Brooke, G.M., Farren, C., Harden, A. and Whiting, M.C., Polymer, 2001, 42(7): 2777  doi: 10.1016/S0032-3861(00)00679-0

    100. [100]

      Brooke, G.M., Cameron, N.R., MacBride, J.A.H. and Whiting, M.C., Polymer, 2002, 43(4): 1139  doi: 10.1016/S0032-3861(01)00694-2

    101. [101]

      Zhou, C.Z., Liu, T.X., Xu, J.M. and Chen, Z.K., Macromolecules, 2003, 36(5): 1457  doi: 10.1021/ma021656a

    102. [102]

      Williams, J.B., Chapman, T.M. and Hercules, D.M., Macromolecules, 2003, 36(11): 3898  doi: 10.1021/ma021056b

    103. [103]

      Takizawa, K., Nulwala, H., Hu, J., Yoshinaga, K. and Hawker, C.J., J. Polym. Sci., Part A: Polym. Chem.,2008, 46(18): 5977  doi: 10.1002/pola.v46:18

    104. [104]

      Takizawa, K., Tang, C. and Hawker, C.J., J. Am. Chem. Soc., 2008, 130(5): 1718  doi: 10.1021/ja077149w

    105. [105]

      Binauld, S., Hawker, C.J., Fleury, E. and Drockenmuller, E., Angew. Chem. Int. Ed., 2009, 48(36): 6654  doi: 10.1002/anie.v48:36

    106. [106]

      Wang, Q., Qu, Y., Tian, H., Geng, Y. and Wang, F., Macromolecules, 2011, 44(6): 1256  doi: 10.1021/ma102954h

    107. [107]

      Binauld, S., Damiron, D., Connal, L.A., Hawker, C.J. and Drockenmuller, E., Macromol. Rapid Commun.,2011, 32(2): 147  doi: 10.1002/marc.v32.2

    108. [108]

      Koch, F.P.V., Smith, P. and Heeney, M., J. Am. Chem. Soc., 2013, 135(37): 13695  doi: 10.1021/ja4057932

    109. [109]

      Leibfarth, F.A., Johnson, J.A. and Jamison, T.F., Proc. Natl. Acad. Sci., 2015, 112(34): 10617  doi: 10.1073/pnas.1508599112

    110. [110]

      Barnes, J.C., Ehrlich, D.J.C., Gao, A.X., Leibfarth, F.A., Jiang, Y., Zhou, E., Jamison, T.F. and Johnson, J.A.,Nat. Chem., 2015, 7(10): 810

    111. [111]

      111 Jiang, X., Lu, J., Zhou, F., Zhang, Z., Pan, X., Zhang, W., Wang, Y., Zhou, N. and Zhu, X., Polym. Chem.,2016, 7(15): 2645

  • 加载中
    1. [1]

      Yu-Yu TanLin-Heng HeWei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986

    2. [2]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

    3. [3]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    4. [4]

      Huiju CaoLei Shi . sp1-Hybridized linear and cyclic carbon chain. Chinese Chemical Letters, 2025, 36(4): 110466-. doi: 10.1016/j.cclet.2024.110466

    5. [5]

      Xue ZhaoMengshan ChenDan WangHaoran ZhangGuangzhi HuYingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327

    6. [6]

      Jian SongShenghui WangQiuge LiuXiao WangShuo YuanHongmin LiuSaiyang ZhangN-Benzyl arylamide derivatives as novel and potent tubulin polymerization inhibitors against gastric cancers: Design, structure–activity relationships and biological evaluations. Chinese Chemical Letters, 2025, 36(2): 109678-. doi: 10.1016/j.cclet.2024.109678

    7. [7]

      Xiao-Bo LiuRen-Ming LiuXiao-Di BaoHua-Jian XuQi ZhangYu-Feng Liang . Nickel-catalyzed reductive formylation of aryl halides via formyl radical. Chinese Chemical Letters, 2024, 35(12): 109783-. doi: 10.1016/j.cclet.2024.109783

    8. [8]

      Xiaohui FuYanping ZhangJuan LiaoZhen-Hua WangYong YouJian-Qiang ZhaoMingqiang ZhouWei-Cheng Yuan . Palladium-catalyzed enantioselective decarboxylation of vinyl cyclic carbamates: Generation of amide-based aza-1,3-dipoles and application to asymmetric 1,3-dipolar cycloaddition. Chinese Chemical Letters, 2024, 35(12): 109688-. doi: 10.1016/j.cclet.2024.109688

    9. [9]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

    10. [10]

      Fengyao CuiQiaona ZhangTangxin XiaoZhouyu WangLeyong Wang . Reversible phosphorescence in pseudopolyrotaxane elastomer. Chinese Chemical Letters, 2024, 35(10): 110061-. doi: 10.1016/j.cclet.2024.110061

    11. [11]

      Xiao-Ya YuanCong-Cong WangBing Yu . Recent advances in FeCl3-photocatalyzed organic reactions via hydrogen-atom transfer. Chinese Chemical Letters, 2024, 35(9): 109517-. doi: 10.1016/j.cclet.2024.109517

    12. [12]

      Yan WangSi-Meng ZhaiPeng LuoXi-Yan DongJia-Yin WangZhen HanShuang-Quan Zang . Vapor- and temperature-triggered reversible optical switching for multi-response Cu8 cluster supercrystals. Chinese Chemical Letters, 2024, 35(11): 109493-. doi: 10.1016/j.cclet.2024.109493

    13. [13]

      Jing-Qi TaoShuai LiuTian-Yu ZhangHong XinXu YangXin-Hua DuanLi-Na Guo . Photoinduced copper-catalyzed alkoxyl radical-triggered ring-expansion/aminocarbonylation cascade. Chinese Chemical Letters, 2024, 35(6): 109263-. doi: 10.1016/j.cclet.2023.109263

    14. [14]

      Yuhan LiuJingyang ZhangGongming YangJian Wang . Highly enantioselective carbene-catalyzed δ-lactonization via radical relay cross-coupling. Chinese Chemical Letters, 2025, 36(1): 109790-. doi: 10.1016/j.cclet.2024.109790

    15. [15]

      Zhengzhong ZhuShaojun HuZhi LiuLipeng ZhouChongbin TianQingfu Sun . A cationic radical lanthanide organic tetrahedron with remarkable coordination enhanced radical stability. Chinese Chemical Letters, 2025, 36(2): 109641-. doi: 10.1016/j.cclet.2024.109641

    16. [16]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    17. [17]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    18. [18]

      Qi LiZi-Lu WangYun-He Xu . Copper-catalyzed 1,4-silylcyanation of 1,3-enynes: A silyl radical-initiated approach for synthesis of difunctionalized allenes. Chinese Chemical Letters, 2025, 36(3): 109991-. doi: 10.1016/j.cclet.2024.109991

    19. [19]

      Yuan TengZichun ZhouJinghua ChenSiying HuangHongyan ChenDaibin Kuang . Dual atom-bridge effect promoting interfacial charge transfer in 2D/2D Cs3Bi2Br9/BiOBr epitaxial heterojunction for efficient photocatalysis. Chinese Chemical Letters, 2025, 36(2): 110430-. doi: 10.1016/j.cclet.2024.110430

    20. [20]

      Peng WangJianjun WangNi SongXin ZhouMing Li . Radical dehydroxymethylative fluorination of aliphatic primary alcohols and diverse functionalization of α-fluoroimides via BF3·OEt2-catalyzed C‒F bond activation. Chinese Chemical Letters, 2025, 36(1): 109748-. doi: 10.1016/j.cclet.2024.109748

Metrics
  • PDF Downloads(0)
  • Abstract views(766)
  • HTML views(42)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return