Citation: Song Qing-long, Wen Hui-ying, de Claville Christiansen Jesper, Yu Dong-hong, Chen Chun-sheng, Jiang Shi-chun. Analysis of Structure Transition and Compatibility of PTT/PC Blend without Transesterification[J]. Chinese Journal of Polymer Science, ;2016, 34(9): 1172-1182. doi: 10.1007/s10118-016-1820-6 shu

Analysis of Structure Transition and Compatibility of PTT/PC Blend without Transesterification

  • Corresponding author: Wen Hui-ying, hywen@nefu.edu.cn Chen Chun-sheng, scjiang@tju.edu.cn
  • Received Date: 2 March 2016
    Revised Date: 31 March 2016
    Accepted Date: 31 March 2016

    Fund Project: the Project of Heilongjiang Province Education Department No. 12523013he Fundamental Research Funds for the Central Universities No. DL13CB01the National Natural Science Foundation of China No. 21404022

  • Poly(trimethylene terephthalate)/polycarbonate (PTT/PC) blends were prepared by solvent mixing to avoid transesterification during high temperature blending. The influences of compositions on the thermal behavior, crystallization morphology and structure of the blends were studied. FTIR results indicated that there was no COO linking to two phenyl groups on each side chain and DSC results supported no transesterification reaction. DSC curves showed that Tc and Tmc increased to maximum range when PC contents were between 7 wt%-15 wt%, however, Tm decreased constantly with the increase of PC contents. It was observed from POM that PTT spherulitic morphology and crystallization kinetics were obviously influenced by the change of PC contents. Structural evolutions during cooling were investigated by SAXS which showed Lc of PTT remained a constant with different PC contents and also fixed during crystallization, nevertheless, it revealed a maximum value of Lnc for sample PTT93. It was concluded that PC chains could be permeated into not only amorphous crystallite structure but also amorphous lamellae structure and 7 wt% PC content was supposed to be the "proper" penetration amount into PTT lamellae structure which led to a maximum capacity of amorphous lamellar layer. Fringed-micelle crystal model was adopted to illustrate semi-crystalline physical structures of the blend in two kinds of component aggregation states.

    1. [1]

       Newman, S. and Paul, D.R.,"Polymer blends", Academic Press, New York, 1978, Vols. I and II

    2. [2]

      Koning, C., Van Duin, M., Pagnoulle, C. and Jerome, R., Prog. Polym. Sci., 1998, 23: 707  doi: 10.1016/S0079-6700(97)00054-3

    3. [3]

      Ward, I.M., Wilding, M.A. and Brody, H., J. Polym. Sci. Polym. Phys. Ed., 1976, 14: 263

    4. [4]

      Ho, R.M., Ke, K.Z. and Chen, M., Macromolecules, 2000, 33: 7529  doi: 10.1021/ma000210w

    5. [5]

      Zhang, J., J. Appl. Polym. Sci., 2004, 91: 1657  doi: 10.1002/(ISSN)1097-4628

    6. [6]

      Yavari, A., Asadinezhad, A., Jafari, S.H., Khonakdar, H.A., Bohme, F. and Hassler, R., Eur. Polym. J., 2005, 41: 2880

    7. [7]

      Lee, L.T. and Woo, E.M., Polym. Int., 2004, 53: 1813  doi: 10.1002/(ISSN)1097-0126

    8. [8]

      Kong, Y. and Hay, J.N., Polymer, 2002, 43: 1805  doi: 10.1016/S0032-3861(01)00772-8

    9. [9]

      Na, S.K., Kong, B.G., Choi, C., Jang, M.K., Nah, J.W., Kim, J.G. and Jo, B.W., Macromol. Res., 2005, 13: 88  doi: 10.1007/BF03219020

    10. [10]

      Aravind, I., Eichhorn, K. J., Komber, H., Jehnichen, D., Zafeiropoulos, N.E., Ahn, K.H., Grohens, Y. and Thomas, S., J. Phys. Chem. B, 2009, 113(6): 1569  doi: 10.1021/jp805204m

    11. [11]

      Huang, D.H., Woo, E.M. and Lee, L.T., Colloid Polym. Sci., 2006, 284: 843  doi: 10.1007/s00396-005-1443-x

    12. [12]

      Chiu, F.C. and Ting, M.H., Polym. Test., 2007, 26: 338  doi: 10.1016/j.polymertesting.2006.12.001

    13. [13]

      Xue, M.L., Yu, Y.L., Sheng, J. and Chuah, H.H., J. Macromol. Sci. Phys., 2005, 44: 331  doi: 10.1081/MB-200056631

    14. [14]

      Shafee, E.E., Naguib, H.F., Li, L., Jiang, S. and An, L., Polym. Eng. Sci., 2010, 50(5): 1036  doi: 10.1002/pen.21489

    15. [15]

      González, J., Eguiazábal, I. and Nazábal, J., J. Appl. Polym. Sci., 2008, 108: 3828  doi: 10.1002/(ISSN)1097-4628

    16. [16]

      Aravind, I., Pionteck, J. and Thomas, S., Polym. Test., 2012, 31: 16  doi: 10.1016/j.polymertesting.2011.09.004

    17. [17]

      Aravind, I., Boumod, A., Grohens, Y. and Thomas, S., Ind. Eng. Chem. Res., 2010, 49: 3873  doi: 10.1021/ie901767y

    18. [18]

      Zhang, Y., Li, H.F., An, L.J. and Jiang, S.C., Acta Polymerica Sinica (in Chinese), 2013, (4): 462

    19. [19]

      Ivanov, D.A., Bar, G., Dosiere, M. and Koch, H.J., Macromolecules, 2008, 41: 9224  doi: 10.1021/ma801604a

    20. [20]

      Men, Y., Rieger, J., Lindner, P., Enderle, H., Lilge, D., Kristen, M., Mihan, S. and Jiang, S., J. Phys. Chem. B., 2005, 109: 16650  doi: 10.1021/jp052723g

    21. [21]

      Bai, H., Luo, F., Zhou, T., Deng, H., Wang, K. and Fu, Q., Polymer, 2011, 52: 2351  doi: 10.1016/j.polymer.2011.03.017

    22. [22]

      Cai, Z.W., Zhang, Y., Li, J.Q., Xue, F.F., Shang, Y.R., He, X.H., Feng, J.C., Wu, Z.H. and Jiang, S.C., Polymer, 2012, 53: 1593  doi: 10.1016/j.polymer.2012.02.012

    23. [23]

      Adam, G. and Gibbs, J.H., J. Chem. Phys., 1965, 43: 139  doi: 10.1063/1.1696442

    24. [24]

      Schick, C. and Donth, E., Physica Scripta., 1991, 43: 423  doi: 10.1088/0031-8949/43/4/010

    25. [25]

      Strobl, G. R. and Schneider, M., J. Polym. Sci., Part B: Polym. Phys., 1980, 18: 1343

    26. [26]

      Flory, P.J., J. Am. Chem. Soc., 1936, 58(10): 1877  doi: 10.1021/ja01301a016

    27. [27]

      Fan, Z.Y., Wang, Y.R. and Bu, H.S., Polym. Eng. Sci., 2003, 43(3): 607  doi: 10.1002/(ISSN)1548-2634

    28. [28]

      Galeski, A. and Psarski, M., Macrormol. Syrnp, 1996, 104: 183

    29. [29]

      Hoffman, J.D. and Miller, R.L., Macromolecules, 1988, 21(10): 3038  doi: 10.1021/ma00188a024

    30. [30]

      Chuang, W.T., Hong, P.D. and Shih, K.S., Polymer, 2004, 45: 8583  doi: 10.1016/j.polymer.2004.10.002

    31. [31]

      Desborough, I.J., Hall, I. and Neisser, J.Z., Polymer, 1979, 20: 545  doi: 10.1016/0032-3861(79)90163-0

    32. [32]

      Wang, B.J., Li, C.Y., Hanzlicek, J.S., Cheng, Z.D., Geil, P.H., Grebowicz, J. and Ho, R.M., Polymer, 2001, 42(16): 7171  doi: 10.1016/S0032-3861(01)00046-5

    33. [33]

      Hall, I.H., "Structure of crystalline polymers", Elsevier Applied Science, London, 1984, p. 39

    34. [34]

      Flory, P.J., Proc. R. Soc. London Ser. A., 1956, 234: 60  doi: 10.1098/rspa.1956.0015

    35. [35]

      Muhlethaler, K.J., J. Polym. Sci., Part C: Polym. Symp., 1969, 28: 305

    36. [36]

      Minick, J., Moet, A., Hiltner, A. and Baer, E., J. Appl. Polym. Sci., 1995, 58: 1371  doi: 10.1002/app.1995.070580819

    37. [37]

      Cheng, W.C., Yang, C.Y., Kang, B.Y., Kuo, M.Y. and Ruan, J., Soft Matter, 2013, 9: 10822  doi: 10.1039/c3sm51726h

    1. [1]

       Newman, S. and Paul, D.R.,"Polymer blends", Academic Press, New York, 1978, Vols. I and II

    2. [2]

      Koning, C., Van Duin, M., Pagnoulle, C. and Jerome, R., Prog. Polym. Sci., 1998, 23: 707  doi: 10.1016/S0079-6700(97)00054-3

    3. [3]

      Ward, I.M., Wilding, M.A. and Brody, H., J. Polym. Sci. Polym. Phys. Ed., 1976, 14: 263

    4. [4]

      Ho, R.M., Ke, K.Z. and Chen, M., Macromolecules, 2000, 33: 7529  doi: 10.1021/ma000210w

    5. [5]

      Zhang, J., J. Appl. Polym. Sci., 2004, 91: 1657  doi: 10.1002/(ISSN)1097-4628

    6. [6]

      Yavari, A., Asadinezhad, A., Jafari, S.H., Khonakdar, H.A., Bohme, F. and Hassler, R., Eur. Polym. J., 2005, 41: 2880

    7. [7]

      Lee, L.T. and Woo, E.M., Polym. Int., 2004, 53: 1813  doi: 10.1002/(ISSN)1097-0126

    8. [8]

      Kong, Y. and Hay, J.N., Polymer, 2002, 43: 1805  doi: 10.1016/S0032-3861(01)00772-8

    9. [9]

      Na, S.K., Kong, B.G., Choi, C., Jang, M.K., Nah, J.W., Kim, J.G. and Jo, B.W., Macromol. Res., 2005, 13: 88  doi: 10.1007/BF03219020

    10. [10]

      Aravind, I., Eichhorn, K. J., Komber, H., Jehnichen, D., Zafeiropoulos, N.E., Ahn, K.H., Grohens, Y. and Thomas, S., J. Phys. Chem. B, 2009, 113(6): 1569  doi: 10.1021/jp805204m

    11. [11]

      Huang, D.H., Woo, E.M. and Lee, L.T., Colloid Polym. Sci., 2006, 284: 843  doi: 10.1007/s00396-005-1443-x

    12. [12]

      Chiu, F.C. and Ting, M.H., Polym. Test., 2007, 26: 338  doi: 10.1016/j.polymertesting.2006.12.001

    13. [13]

      Xue, M.L., Yu, Y.L., Sheng, J. and Chuah, H.H., J. Macromol. Sci. Phys., 2005, 44: 331  doi: 10.1081/MB-200056631

    14. [14]

      Shafee, E.E., Naguib, H.F., Li, L., Jiang, S. and An, L., Polym. Eng. Sci., 2010, 50(5): 1036  doi: 10.1002/pen.21489

    15. [15]

      González, J., Eguiazábal, I. and Nazábal, J., J. Appl. Polym. Sci., 2008, 108: 3828  doi: 10.1002/(ISSN)1097-4628

    16. [16]

      Aravind, I., Pionteck, J. and Thomas, S., Polym. Test., 2012, 31: 16  doi: 10.1016/j.polymertesting.2011.09.004

    17. [17]

      Aravind, I., Boumod, A., Grohens, Y. and Thomas, S., Ind. Eng. Chem. Res., 2010, 49: 3873  doi: 10.1021/ie901767y

    18. [18]

      Zhang, Y., Li, H.F., An, L.J. and Jiang, S.C., Acta Polymerica Sinica (in Chinese), 2013, (4): 462

    19. [19]

      Ivanov, D.A., Bar, G., Dosiere, M. and Koch, H.J., Macromolecules, 2008, 41: 9224  doi: 10.1021/ma801604a

    20. [20]

      Men, Y., Rieger, J., Lindner, P., Enderle, H., Lilge, D., Kristen, M., Mihan, S. and Jiang, S., J. Phys. Chem. B., 2005, 109: 16650  doi: 10.1021/jp052723g

    21. [21]

      Bai, H., Luo, F., Zhou, T., Deng, H., Wang, K. and Fu, Q., Polymer, 2011, 52: 2351  doi: 10.1016/j.polymer.2011.03.017

    22. [22]

      Cai, Z.W., Zhang, Y., Li, J.Q., Xue, F.F., Shang, Y.R., He, X.H., Feng, J.C., Wu, Z.H. and Jiang, S.C., Polymer, 2012, 53: 1593  doi: 10.1016/j.polymer.2012.02.012

    23. [23]

      Adam, G. and Gibbs, J.H., J. Chem. Phys., 1965, 43: 139  doi: 10.1063/1.1696442

    24. [24]

      Schick, C. and Donth, E., Physica Scripta., 1991, 43: 423  doi: 10.1088/0031-8949/43/4/010

    25. [25]

      Strobl, G. R. and Schneider, M., J. Polym. Sci., Part B: Polym. Phys., 1980, 18: 1343

    26. [26]

      Flory, P.J., J. Am. Chem. Soc., 1936, 58(10): 1877  doi: 10.1021/ja01301a016

    27. [27]

      Fan, Z.Y., Wang, Y.R. and Bu, H.S., Polym. Eng. Sci., 2003, 43(3): 607  doi: 10.1002/(ISSN)1548-2634

    28. [28]

      Galeski, A. and Psarski, M., Macrormol. Syrnp, 1996, 104: 183

    29. [29]

      Hoffman, J.D. and Miller, R.L., Macromolecules, 1988, 21(10): 3038  doi: 10.1021/ma00188a024

    30. [30]

      Chuang, W.T., Hong, P.D. and Shih, K.S., Polymer, 2004, 45: 8583  doi: 10.1016/j.polymer.2004.10.002

    31. [31]

      Desborough, I.J., Hall, I. and Neisser, J.Z., Polymer, 1979, 20: 545  doi: 10.1016/0032-3861(79)90163-0

    32. [32]

      Wang, B.J., Li, C.Y., Hanzlicek, J.S., Cheng, Z.D., Geil, P.H., Grebowicz, J. and Ho, R.M., Polymer, 2001, 42(16): 7171  doi: 10.1016/S0032-3861(01)00046-5

    33. [33]

      Hall, I.H., "Structure of crystalline polymers", Elsevier Applied Science, London, 1984, p. 39

    34. [34]

      Flory, P.J., Proc. R. Soc. London Ser. A., 1956, 234: 60  doi: 10.1098/rspa.1956.0015

    35. [35]

      Muhlethaler, K.J., J. Polym. Sci., Part C: Polym. Symp., 1969, 28: 305

    36. [36]

      Minick, J., Moet, A., Hiltner, A. and Baer, E., J. Appl. Polym. Sci., 1995, 58: 1371  doi: 10.1002/app.1995.070580819

    37. [37]

      Cheng, W.C., Yang, C.Y., Kang, B.Y., Kuo, M.Y. and Ruan, J., Soft Matter, 2013, 9: 10822  doi: 10.1039/c3sm51726h

  • 加载中
    1. [1]

      Hongxia LiXiyang WangDu QiaoJiahao LiWeiping ZhuHonglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747

    2. [2]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    3. [3]

      Shiyu HouMaolin SunLiming CaoChaoming LiangJiaxin YangXinggui ZhouJinxing YeRuihua Cheng . Computational fluid dynamics simulation and experimental study on mixing performance of a three-dimensional circular cyclone-type microreactor. Chinese Chemical Letters, 2024, 35(4): 108761-. doi: 10.1016/j.cclet.2023.108761

    4. [4]

      Jun-Ting MoZheng Wang . Achieving tunable long persistent luminescence in metal organic halides based on pyridine solvent. Chinese Chemical Letters, 2024, 35(9): 109360-. doi: 10.1016/j.cclet.2023.109360

    5. [5]

      Meiling XuXinyang LiPengyuan LiuJunjun LiuXiao HanGuodong ChaiShuangling ZhongBai YangLiying Cui . A novel and visible ratiometric fluorescence determination of carbaryl based on red emissive carbon dots by a solvent-free method. Chinese Chemical Letters, 2025, 36(2): 109860-. doi: 10.1016/j.cclet.2024.109860

    6. [6]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    7. [7]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    8. [8]

      Yuhang Li Yang Ling Yanhang Ma . Application of three-dimensional electron diffraction in structure determination of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100237-100237. doi: 10.1016/j.cjsc.2024.100237

    9. [9]

      Hai-Ling Wang Zhong-Hong Zhu Hua-Hong Zou . Structure and assembly mechanism of high-nuclear lanthanide-oxo clusters. Chinese Journal of Structural Chemistry, 2024, 43(9): 100372-100372. doi: 10.1016/j.cjsc.2024.100372

    10. [10]

      Jie MaJianxiang WangJianhua YuanXiao LiuYun YangFei Yu . The regulating strategy of hierarchical structure and acidity in zeolites and application of gas adsorption: A review. Chinese Chemical Letters, 2024, 35(11): 109693-. doi: 10.1016/j.cclet.2024.109693

    11. [11]

      Teng-Yu HuangJunliang SunDe-Xian WangQi-Qiang Wang . Recent progress in chiral zeolites: Structure, synthesis, characterization and applications. Chinese Chemical Letters, 2024, 35(12): 109758-. doi: 10.1016/j.cclet.2024.109758

    12. [12]

      Guilong LiWenbo MaJialing ZhouCaiqin WuChenling YaoHuan ZengJian Wang . A composite hydrogel with porous and homogeneous structure for efficient osmotic energy conversion. Chinese Chemical Letters, 2025, 36(2): 110449-. doi: 10.1016/j.cclet.2024.110449

    13. [13]

      Run-Han LiTian-Yi DangWei GuanJiang LiuYa-Qian LanZhong-Min Su . Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35(5): 108805-. doi: 10.1016/j.cclet.2023.108805

    14. [14]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    15. [15]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    16. [16]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    17. [17]

      Tiantian LiRuochen JinBin WuDongming LanYunjian MaYonghua Wang . A novel insight of enhancing the hydrogen peroxide tolerance of unspecific peroxygenase from Daldinia caldariorum based on structure. Chinese Chemical Letters, 2024, 35(4): 108701-. doi: 10.1016/j.cclet.2023.108701

    18. [18]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

    19. [19]

      Ziyi Liu Xunying Liu Lubing Qin Haozheng Chen Ruikai Li Zhenghua Tang . Alkynyl ligand for preparing atomically precise metal nanoclusters: Structure enrichment, property regulation, and functionality enhancement. Chinese Journal of Structural Chemistry, 2024, 43(11): 100405-100405. doi: 10.1016/j.cjsc.2024.100405

    20. [20]

      Yulin MaoJingyu MaJiecheng JiYuliang WangWanhua WuCheng Yang . Crown aldoxime ethers: Their synthesis, structure, acid-catalyzed/photo-induced isomerization and adjustable guest binding. Chinese Chemical Letters, 2024, 35(11): 109927-. doi: 10.1016/j.cclet.2024.109927

Metrics
  • PDF Downloads(0)
  • Abstract views(810)
  • HTML views(38)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return