Citation: Zhuo-ye Chai, Zhong Xie, Peng Zhang, Xiao Ouyang, Rui Li, Shan Gao, Hao Wei, Lian-he Liu, Zhi-jun Shuai. High Impact Resistance Epoxy Resins by Incorporation of Quadruply Hydrogen Bonded Supramolecular Polymers[J]. Chinese Journal of Polymer Science, ;2016, 34(7): 850-857. doi: 10.1007/s10118-016-1809-1 shu

High Impact Resistance Epoxy Resins by Incorporation of Quadruply Hydrogen Bonded Supramolecular Polymers

  • A bisphenol A based epoxy was incorporated with a quadruply hydrogen bonded supramolecular polymer as a toughening agent to prepare a composite epoxy resin with higher impact resistance. The supramolecular polymer comprising poly-(propylene glycol) bis(2-aminopropyl) ether chains and 2-ureido-4[1H]-pyrimidinone moieties (UPy) self-assembled into spherical domains with sizes of 300 nm to 600 nm in diameter by micro phase separation in bulk epoxy matrixes. A significant improvement of 300% in impact resistance of the supramolecular polymer incorporated epoxy resin was obtained when the content of supramolecular polymer was 10 wt%. Tensile tests showed that the mechanical properties of the modified epoxy resin containing the hydrogen-bonded supramolecular polymers are also improved compared with those of the neat epoxy resin.
  • 加载中
    1. [1]

      Wilson, A.J., Soft Matter, 2007, 3: 409

    2. [2]

      De Greef, T.F.A. and Meijer, E.W., Nature, 2008, 453: 171

    3. [3]

      Fox, J.D. and Rowan, S.J., Macromolecules, 2009, 42: 6823

    4. [4]

      Brunsveld, L., Folmer, B.J.B., Meijer, E.W. and Sijbesma, R.P., Chem. Rev., 2001, 101: 4071

    5. [5]

      Cordier, P., Tournilhac, F., Soulie-Ziakovic, C. and Leibler, L., Nature, 2008, 451: 977

    6. [6]

      Masiero, S., Lena, S., Pieraccini, S. and Spada, G.P., Angew. Chem., Int. Ed., 2008, 47: 3184

    7. [7]

      Burnworth, M., Tang, L., Kumpfer, J.R., Duncan, A.J., Beyer, F.L., Fiore, G.L., Rowan, S.J. and Weder, C., Nature, 2011, 472: 334

    8. [8]

      Xu, J.F., Huang, Z., Chen, L., Qin, B., Song, Q., Wang, Z. and Zhang, X., ACS Macro Lett., 2015, 4: 1410

    9. [9]

      Eling, B. and Lindsay, C.I., 2007, U.S. Pat., 2007/0149751 A1

    10. [10]

      Loontjens, J.A., Jansen, J.E.G.A. and Plum, B.J.M., 2000, U.S. Pat., 6,683,151 B1

    11. [11]

      Dankers, P.Y.W. and Meijer, E.W., Bull. Chem. Soc. Jpn., 2007, 80: 2047

    12. [12]

      Dankers, P.Y.W., Harmsen, M.C., Brouwer, L.A., Van Luyn, M.J.A. and Meijer, E.W., Nat. Mater., 2005, 4: 568

    13. [13]

      Burattini, S., Greenland, B.W., Merino, D.H., Weng, W., Seppala, J., Colquhoun, H.M., Hayes, W., Mackay, M.E., Hamley, I.W. and Rowan, S.J., J. Am. Chem. Soc., 2010, 132: 12051

    14. [14]

      Burattini, S., Greenland, B.W., Chappell, D., Colquhoun, H.M. and Hayes, W., Chem. Soc. Rev., 2010, 39: 1973

    15. [15]

      Corbin, P.S. and Zimmerman, S.C., J. Am. Chem. Soc., 2000, 122: 3779

    16. [16]

      Zimmerman, S.C. and Murray, T.J., Tetrahedron Lett., 1994, 35: 4077

    17. [17]

      Kolotuchin, S.V. and Zimmerman, S.C., J. Am. Chem. Soc., 1998, 120: 9092

    18. [18]

      Kotera, M., Lehn, J.M. and Vigneron, J.P., J. Chem. Soc., Chem. Commun., 1994, 197

    19. [19]

      Fouquey, C., Lehn, J.M. and Levelut, A.M., Adv. Mater., 1990, 2: 254

    20. [20]

      Griffin, A.C., Lee, C.M. and St. Pourcain, C.B., Polym. Mater. Sci. Eng., 1995, 72: 172

    21. [21]

      Alexander, C., Jariwala, C.P., Lee, C.M. and Griffin, A.C., Macromol. Symp., 1994, 77: 283

    22. [22]

      Castellano, R.K., Nuckolls, C. and Rebek Jr., J., Polym. News, 2000, 25: 44

    23. [23]

      Sijbesma, R.P., Beijer, F.H., Brunsveld, L., Folmer, B.J.B., Hirschberg, J.H.K., Lange, R.F.M., Lowe, J.K.L. and Meijer, E.W., Science, 1997, 278: 1601

    24. [24]

      De Greef, T.F.A., Smulders, M.M. J., Wolffs, M., Schenning, A.P.H.J., Sijbesma, R.P. and Meijer, E.W., Chem. Rev., 2009, 109: 5687

    25. [25]

      Yang, L., Tan, X., Wang, Z. and Zhang, X., Chem. Rev., 2015, 115: 7196

    26. [26]

      Soontjens, S.H.M., Sijbesma, R.P., van Genderen, M.H.P. and Meijer, E.W., J. Am. Chem. Soc., 2000, 122: 7487

    27. [27]

      Cate, A.T. and Sijbesma, R.P., Macromol. Rapid Commun., 2002, 23: 1094

    28. [28]

      Folmer, B.J.B., Sijbesma, R.P., Versteegen, R.M., van der Rijt, J.A.J. and Meijer, E.W., Adv. Mater., 2000, 12: 874

    29. [29]

      Yamauchi, K., Lizotte, J.R., Hercules, D.M., Vergne, M.J., Long, T.E., J. Am. Chem. Soc., 2002, 124: 8599

    30. [30]

      Dankers, P.Y.W., van Leeuwen, E.N.M., van Gemert, G.M.L., Spiering, A.J.H., Harmsen, M.C., Brouwer, L.A., Janssen, H.M., Bosman, A.W., van Luyn, M.J.A. and Meijer, E.W., Biomaterials, 2006, 27: 5490

    31. [31]

      Dankers, P.Y.W., Zhang, Z., Wisse, E., Grijpma, D.W., Sijbesma, R.P., Feijen, J. and Meijer, E.W., Macromolecules, 2006, 39: 8763

    32. [32]

      Hirschberg, J.H.K., Beijer, F.H., van Aert, H.A., Magusin, P.C.M.M., Sijbesma, R.P. and Meijer, E.W., Macromolecules, 1999, 32: 2696

    33. [33]

      Ligthart, G.B.W.L., Ohkawa, H., Sijbesma, R.P. and Meijer, E.W., J. Am. Chem. Soc., 2005, 127: 810

    34. [34]

      Pearson, R.A. and Yee, A.F., J. Mater. Sci., 1991, 26: 3828

    35. [35]

      Gam, K.T., Miyamoto, M., Nishimura, R. and Sue, H.-J., Polym. Eng. Sci., 2003, 43: 1635

    36. [36]

      Derkowski, B.J. and Sue, H.-J., Polym. Compos., 2003, 24:158

    37. [37]

      Larranaga, M., Serrano, E., Martin, M.D., Tercjack, A., Kortaberria, G. and dela Caba, K., Polym. Int., 2007, 56: 1392

    38. [38]

      Hydro, R.M. and Pearson, R.A., J. Polym. Sci., Part B: Polym. Phys., 2007, 45: 1470

    39. [39]

      Wilco, P.J., Giuseppe, A.P., Wisse E., Dankers, P.Y.W. and Meijer, E.W., Macromolecules, 2011, 44: 6776

  • 加载中
    1. [1]

      Yi-Chang Yang Rui-Xi Wang Li-Ming Wu Ling Chen . Regulating the coplanarity of π-conjugated units through hydrogen bonding in FAHC2O4 and FAH2C3N3S3 crystals. Chinese Journal of Structural Chemistry, 2025, 44(10): 100714-100714. doi: 10.1016/j.cjsc.2025.100714

    2. [2]

      Zhaoru ChenXiaoxu LiuHaonan ChenJialong LiXiaofeng WangJianfeng Zhu . Application of epoxy resin in cultural relics protection. Chinese Chemical Letters, 2024, 35(4): 109194-. doi: 10.1016/j.cclet.2023.109194

    3. [3]

      Yun Zhou Geqian Fang Haiyan Wang Wenjun Yu Chun Zhu Jin-Xia Liang Jian Lin . Non-covalent interactions between adsorbed •OH species and UiO-66-NH2 for methane hydroxylation. Chinese Journal of Structural Chemistry, 2025, 44(8): 100629-100629. doi: 10.1016/j.cjsc.2025.100629

    4. [4]

      Lei ZhouYoujun ZhouLizhen FangYiqiao BaiYujia MengLiang LiJie YangYong Yao . Pillar[5]arene based artificial light-harvesting supramolecular polymer for efficient and recyclable photocatalytic applications. Chinese Chemical Letters, 2024, 35(9): 109509-. doi: 10.1016/j.cclet.2024.109509

    5. [5]

      Qiao ZhangXin TanZihang LiuJingyu MaDongqi CaoFenfang LiShengyi Dong . Optically healable and mechanically tough supramolecular glass from low-molecular-weight compounds. Chinese Chemical Letters, 2025, 36(8): 110660-. doi: 10.1016/j.cclet.2024.110660

    6. [6]

      Qunpeng DuanQiaona ZhangJiayuan ZhangShihao LinTangxin XiaoLeyong Wang . Artificial light-harvesting systems based on supramolecular polymers . Chinese Chemical Letters, 2025, 36(12): 111421-. doi: 10.1016/j.cclet.2025.111421

    7. [7]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    8. [8]

      Xue WuYupeng LiuBingzhe WangLingyun LiZhenjian LiQingcheng WangQuansheng ChengGuichuan XingSongnan Qu . Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy. Acta Physico-Chimica Sinica, 2025, 41(9): 100109-0. doi: 10.1016/j.actphy.2025.100109

    9. [9]

      Chunshi HeLinqing LiYuanrong SunXuefang WangJie RenJianbo Li . Enhanced durability of a novel thiol-epoxy network thermosets with excellent hygrothermal and chemical resistance. Chinese Chemical Letters, 2025, 36(6): 110905-. doi: 10.1016/j.cclet.2025.110905

    10. [10]

      Xiaoman DangZhiying WuTangxin XiaoZhouyu WangLeyong Wang . Highly robust supramolecular polymer networks crosslinked by metallacycles. Chinese Chemical Letters, 2024, 35(12): 110208-. doi: 10.1016/j.cclet.2024.110208

    11. [11]

      Wenqi Wang Liuliu Long Yue-Biao Zhang . Supramolecular catenation enables high-capacity hydrogen storage. Chinese Journal of Structural Chemistry, 2025, 44(5): 100512-100512. doi: 10.1016/j.cjsc.2025.100512

    12. [12]

      Gongxi LiJun JinJunxuan TuHaoguo YueYing WangXiaohui JiaWeiyuan YinZhenglin HanYuxuan DengChunfeng ShiYonggang Zhen . Intrinsically stretchable polymer semiconductors synergistically constructed by hydrogen bonds and metal coordination. Chinese Chemical Letters, 2025, 36(12): 111716-. doi: 10.1016/j.cclet.2025.111716

    13. [13]

      Ziqi Chen Miriding Mutailipu . Achieving the birefringence-bandgap trade-off: hydrogen-bond engineered biuret-cyanurate. Chinese Journal of Structural Chemistry, 2025, 44(10): 100695-100695. doi: 10.1016/j.cjsc.2025.100695

    14. [14]

      Runtan GaoYang ZongTingting LiNa LiuZongquan Wu . Three-dimensional supramolecular polymer frameworks with precisely tunable and large apertures for enzyme encapsulation. Chinese Chemical Letters, 2026, 37(1): 111582-. doi: 10.1016/j.cclet.2025.111582

    15. [15]

      Xiaodong Zhang Bohui Xu Deshuai Xiao Xinyuan Zhang Pifu Gong Zheshuai Lin . From centrosymmetric CN3H6C6H5SO3 to non-centrosymmetric CN3H6C6H4SO3(OH): Hydroxyl introduced hydrogen bond reconstruction to realize strong second harmonic generation. Chinese Journal of Structural Chemistry, 2025, 44(10): 100707-100707. doi: 10.1016/j.cjsc.2025.100707

    16. [16]

      Weiwei HeHongbo ZhangXudong LinLili ZhuTingting ZhengHao PeiYang TianMin ZhangGuoyue ShiLei WuJianlong ZhaoGulinuer WumaierShengqing LiYufang XuHonglin LiXuhong Qian . Advancements in life-on-a-chip: The impact of "Beyond Limits Manufacturing" technology. Chinese Chemical Letters, 2024, 35(5): 109091-. doi: 10.1016/j.cclet.2023.109091

    17. [17]

      Mengwen Wang Qintao Sun Yue Liu Zhengan Yan Qiyu Xu Yuchen Wu Tao Cheng . Impact of lithium nitrate additives on the solid electrolyte interphase in lithium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(2): 100203-100203. doi: 10.1016/j.cjsc.2023.100203

    18. [18]

      Xiao YangWenjing LiuJiarui KongXiangcheng ShanQiupei LeiZhipeng YinRunzeng LiuMin ZhangQingzhe ZhangYongguang YinChuanyong JingYong Cai . Synthesis of amine-functionalized polystyrene resin-based globular adsorbents for efficient and selective removal of As and Sb species. Chinese Chemical Letters, 2025, 36(11): 110856-. doi: 10.1016/j.cclet.2025.110856

    19. [19]

      Junchen PengXue YinDandan DongZhongyuan GuoQinqin WangMinmin LiuFei HeBin DaiChaofeng Huang . Promotion effect of epoxy group neighboring single-atom Cu site on acetylene hydrochlorination. Chinese Chemical Letters, 2024, 35(6): 109508-. doi: 10.1016/j.cclet.2024.109508

    20. [20]

      Dongmei YaoJunsheng ZhengLiming JinXiaomin MengZize ZhanRunlin FanCong FengPingwen Ming . Effect of surface oxidation on the interfacial and mechanical properties in graphite/epoxy composites composite bipolar plates. Chinese Chemical Letters, 2024, 35(11): 109382-. doi: 10.1016/j.cclet.2023.109382

Metrics
  • PDF Downloads(0)
  • Abstract views(1339)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return