Citation: Jian-hua Li, Shuang-shuang Wang, De-bin Zhang, Xing-xing Ni, Qi-qing Zhang. Amino Acids Functionalized Graphene Oxide for Enhanced Hydrophilicity and Antifouling Property of Poly(vinylidene fluoride) Membranes[J]. Chinese Journal of Polymer Science, ;2016, 34(7): 805-819. doi: 10.1007/s10118-016-1808-2 shu

Amino Acids Functionalized Graphene Oxide for Enhanced Hydrophilicity and Antifouling Property of Poly(vinylidene fluoride) Membranes

  • Corresponding author: Jian-hua Li, jhli_2005@163.com Qi-qing Zhang, zhangqiq@126.com
  • Received Date: 16 December 2015
    Revised Date: 9 March 2016
    Accepted Date: 18 March 2016

  • Herein, functionalized graphene oxide (GO) was prepared by the covalent functionalization with amino acids (lysine, glycine, glutamic acid and tyrosine) in this study. Zeta potential results demonstrated that covalent functionalization of GO with amino acids was favourable for their homogeneous dispersion in water and organic solvents. Based on the higher absolute value of zeta potential and the better dipersion stability of GO-lysine, the PVDF/GO-lysine hybrid membranes were then prepared via the phase inversion induced by immersion precipitation technique. SEM images showed a better pore diameter and porosity distribution on the PVDF/GO-lysine membrane surface. The zeta potential absolute value of the PVDF/GO-lysine membrane surface was higher than that of the virgin PVDF membrane. Furthermore, the PVDF/GO-lysine membranes surface exhibited good hydrophilicity. The water flux of PVDF/GO-lysine membranes can reach two times of that of the virgin PVDF membrane. And the BSA adsorbed amount on PVDF/GO-lysine surface was decreased to 0.82 mg/cm2 for PVDF/GO-lysine-8% membrane. Filtration experiment results indicated that the fouling resistance was significantly improved for the PVDF/GO-lysine membranes. As a result, lysine functionalized GO will provide a promising method to fabricate graphene oxide based hybrid membranes with effective antifouling property and hydrophilicity.
  • 加载中
    1. [1]

      Li, J.H., Shao, X.S., Zhou, Q., Li, M.Z. and Zhang, Q.Q., Appl. Surf. Sci., 2013, 265: 663

    2. [2]

      Mahdie, S.K. and Vahid, V., Ind. Eng. Chem. Res., 2014, 53: 13370

    3. [3]

      Liu, J., Shen, X., Zhao, Y.P. and Chen, L., Ind. Eng. Chem. Res., 2013, 52: 18392

    4. [4]

      Chia-Hung, K., Chen, G.J., Yawo-Kuo, T., Liu, Y.C. and Chwen-Jen S., Ind. Eng. Chem. Res., 2012, 51: 5141

    5. [5]

      Wang, J.H., Zhang, Y.H., Xu, Y.Y. and Zhu, B.K., Chinese J. Polym. Sci., 2014, 32(2): 143

    6. [6]

      Lee, N., Amy, G., Croué, J.P. and Buisson, H., Water Res., 2004, 38: 4511

    7. [7]

      Xu, Z.W., Zhang, J.G., Shan, M.J., Li, Y.L., Li, B.D. and Niu, J.R., J. Membr. Sci., 2014, 458: 1

    8. [8]

      Nabe, A., Staude, E. and Belfort, G., J. Membr. Sci., 1997, 133: 57

    9. [9]

      Schulze, A., Maitz, M.F., Zimmermann, R., Marquardt, B., Fischer, M., Werner, C., Wenta, M. and Thomas, I., RSC Adv., 2013, 3: 22518

    10. [10]

      Meng, J.Q., Chen, C.L., Huang, L.P., Du, Q.Y. and Zhang, Y.F., Appl. Surf. Sci., 2011, 257: 6282

    11. [11]

      Yuan, T., Meng, J.Q., Hao, T.Y., Wang, Z.H. and Zhang, Y.F., ACS Appl. Mater. Interfaces, 2015, 7: 14896

    12. [12]

      Yuan, J., Meng, J.Q., Kang, Y.L., Du, Q.Y. and Zhang, Y.F., Appl. Surf. Sci., 2012, 258: 2856

    13. [13]

      Sun, Q., Zhang, Y.F., Chen, C.L., Guo, X.Z. and Meng, J.Q., Chinese J. Polym. Sci., 2014, 32(7): 880

    14. [14]

      Singh, A.K., Singh, P., Mishra, S. and Shahi, V.K., J. Mater. Chem., 2012, 22: 1834

    15. [15]

      Majeed, S., Fierro, D., Buhr, K., Wind, J., Du, B., Boschetti-de-Fierro, A. and Abetz, V., J. Membr. Sci., 2012, 403-404: 101

    16. [16]

      Sui, Y., Wang, Z.N., Gao, X.L. and Gao, C.J., J. Membr. Sci., 2012, 413-414: 38

    17. [17]

      Venault., A., Liu, Y.H., Wu, J.R., Yang, H.S., Chang, Y., Lai, J.Y. and Aimar, P., J. Membr. Sci., 2014, 450: 340

    18. [18]

      Wu, M.Y., Meng, S.J., Wang, Q., Huang, W. and Dong, X.C., ACS Appl Mater Inter., 2015, 7: 21089

    19. [19]

      Xia, S.J. and Ni, M.Z., J. Membr. Sci., 2015, 473: 54

    20. [20]

      Cao, K.T., Jiang, Z.Y., Zhao, J., Zhao, C.H., Gao, C.Y., Pan, F.S., Wang, B.Y., Cao, X.Z. and Yang, J., J. Membr. Sci., 2014, 469: 272

    21. [21]

      Zhu, Y.W., Murali, S., Cai, W.W., Li, X.S., Suk, J.W., Jeffrey, R.P. and Rodney, S. R., Adv. Mater., 2010, 22: 3906

    22. [22]

      Konkena, B. and Vasudevan, S., Langmuir., 2012, 28: 12432

    23. [23]

      Konkena, B. and Vasudevan, S., J. Phys. Chem. C., 2015, 119: 6356

    24. [24]

      Loh, C.H. and Wang, R., J. Membr. Sci., 2013, 446: 492

    25. [25]

      Birkner, M. and Ulbricht, M., J. Membr. Sci., 2015, 494: 57

    26. [26]

      Yang, R., Goktekin, E. and Karen K. G., Langmuir., 2015, 31: 11895

    27. [27]

      Duan, X.B. and Randy S. L., Biomaterial., 2002, 23: 1197

    28. [28]

      Shi, Q., Su, Y.L., Chen, W.J., Peng, J.M., Nie, L.Y., Zhang, L. and Jiang, Z.Y., J. Membr. Sci., 2011, 366: 398

    29. [29]

      Wang, J., Yao, Y., Ji, B., Huang, W., Zhou, Y.F. and Yan, D.Y., Chinese J. Polym. Sci., 2011, 29(2): 241

    30. [30]

      Jayalakshmi, A., Rajesh, S. and Mohan, D., Appl. Surf. Sci., 2012, 258: 9770

    31. [31]

      Lapointe, J.F., Gauthier, S.E., Pouliot, Y. and Bouchard, C., J. Membr. Sci., 2005, 261: 36

    32. [32]

      Dinh K.D. and Euij, K., Nanoscale Re Lett., 2015, 10: 6

    33. [33]

      Daniela, C.M., Dmitry, V.K., Jacob, M.B., Alexander, S., Sun, Z.Z., Alexander, S., Lawrence, B.A., Lu, W. and James, M.T., ACS Nano., 2010, 8 : 4806

    34. [34]

      Liu, H.Y., Cheng, J., Chen, F.J., Hou, F.P., Bai, D.C., Xi, P.X. and Zeng, Z.Z., ACS Appl. Mater. Interfaces., 2014, 6: 3132

    35. [35]

      Kuilla, T., Bhadra, S., Yao, D., Kim, N.H., Bose, S. and Lee, J.H., Prog. Polym. Sci., 2010, 35: 1350

    36. [36]

      Callejas Fernández, J., de las Nieves, F.J., Martínez García, R. and Hidalgo-Alvarez, R., Colloids Surf., 1991, 61: 123

    37. [37]

      Kong, J.Y., Choi, M.C., Kim, G.Y., Park, J.J., Selvaraj, M., Han, M. and Ha, C.S., Eur. Polym. J., 2012, 48: 1394

    38. [38]

      Compton, O.C., Dikin, D.A., Putz, K.W., Brinson, L.C. and Nguyen, S.T., Adv. Mater., 2010, 22: 892

    39. [39]

      Yang, Y. and Liu, T., Appl. Surf. Sci., 2011, 257: 8950

    40. [40]

      Luan, V.H., Tien, H.N. and Hur, S.H., J. Colloid Interface Sci., 2015, 6: 437

    41. [41]

      Luan, V.H., Tien, H.N., Hoa, L.T., Hien, N.T.M., Oh, E.S. and Chung, J., J. Mater. Chemistry A., 2013,1: 208

    42. [42]

      Hester, J.F., Banerjee, P., Won, Y.Y., Akthakul, A., Acar, M.H. and Mayes. A.M., Macromolecules., 2002, 35: 7652

    43. [43]

      Wang, Z., Yu, H., Xia, J., Zhang, F., Li, F., Xia, Y. and Li, Y., Desalination., 2012, 299: 50

    44. [44]

      Shi, Q., Su, Y.L., Chen, W.J., Peng, J.M., Nie, L.Y., Zhang, L. and Jiang, Z.Y., J. Membr. Sci., 2011, 366: 398

  • 加载中
    1. [1]

      Ying ChenLi LiJunyao ZhangTongrui SunXuan ZhangShiqi ZhangJia HuangYidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102

    2. [2]

      Zixu XiePengfei ZhangZiyao ZhangChen ChenXing Wang . The choice of antimicrobial polymers: Hydrophilic or hydrophobic?. Chinese Chemical Letters, 2024, 35(9): 109768-. doi: 10.1016/j.cclet.2024.109768

    3. [3]

      Xinhui FangXinrui WangBin Ding . Applications of luminescent metal-organic frameworks as pioneering biosensors for biological and chemical detection. Chinese Chemical Letters, 2025, 36(8): 110453-. doi: 10.1016/j.cclet.2024.110453

    4. [4]

      Yuanyi ZhouKe MaJinfeng LiuZirun ZhengBo HuYu MengZhizhong LiMingshan Zhu . Is reactive oxygen species the only way for cancer inhibition over single atom nanomedicine? Autophagy regulation also works. Chinese Chemical Letters, 2024, 35(6): 109056-. doi: 10.1016/j.cclet.2023.109056

    5. [5]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    6. [6]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

    7. [7]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    8. [8]

      Lingna WangChenxin TianRuobin DaiZhiwei Wang . Eco-friendly regeneration of end-of-life PVDF membrane with triethyl phosphate: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(9): 109356-. doi: 10.1016/j.cclet.2023.109356

    9. [9]

      Zhen DaiLinzhi TanYeyu SuKerui ZhaoYushun TianYu LiuTao Liu . Site-specific incorporation of reduction-controlled guest amino acids into proteins for cucurbituril recognition. Chinese Chemical Letters, 2024, 35(5): 109121-. doi: 10.1016/j.cclet.2023.109121

    10. [10]

      Xiang HuangDongzhen XuYang LiuXia HuangYangfan WuDongmei FangBing XiaWei JiaoJian LiaoMin Wang . Asymmetric synthesis of difluorinated α-quaternary amino acids (DFAAs) via Cu-catalyzed difluorobenzylation of aldimine esters. Chinese Chemical Letters, 2024, 35(12): 109665-. doi: 10.1016/j.cclet.2024.109665

    11. [11]

      Qian RenXue DaiRan CenYang LuoMingyang LiZiyun ZhangQinghong BaiZhu TaoXin Xiao . A cucurbit[8]uril-based supramolecular phosphorescent assembly: Cell imaging and sensing of amino acids in aqueous solution. Chinese Chemical Letters, 2024, 35(12): 110022-. doi: 10.1016/j.cclet.2024.110022

    12. [12]

      Min-Hang ZhouJun JiangWei-Min He . EDA-complexes-enabled photochemical synthesis of α-amino acids with imines and tetrabutylammonium oxalate. Chinese Chemical Letters, 2025, 36(1): 110446-. doi: 10.1016/j.cclet.2024.110446

    13. [13]

      Yi-Xin ZhangFang-Qi ZhangAo-Pei PengTao JiangYa-Xi MengYang LiShuang-Xi GuYuan-Yuan Zhu . Enantioselective recognition of amino acids in water using emission-tunable chiral fluorescent probes. Chinese Chemical Letters, 2026, 37(1): 111500-. doi: 10.1016/j.cclet.2025.111500

    14. [14]

      Hao CaiXiaoyan WuLei JiangFeng YuYuxiang YangYan LiXian ZhangJian LiuZijian LiHong Bi . Lysosome-targeted carbon dots with a light-controlled nitric oxide releasing property for enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(4): 108946-. doi: 10.1016/j.cclet.2023.108946

    15. [15]

      Hao GuRui LiQiuying LiSheng LuYahui ChenXiaoning YangHuili MaZhijun XuXiaoqiang Chen . Multi-dimensional hydrogen bonds regulated emissions of single-molecule system enabling surficial hydrophobicity/hydrophilicity mapping. Chinese Chemical Letters, 2025, 36(5): 110116-. doi: 10.1016/j.cclet.2024.110116

    16. [16]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    17. [17]

      Yihong LiZhong QiuLei HuangShenghui ShenPing LiuHaomiao ZhangFeng CaoXinping HeJun ZhangYang XiaXinqi LiangChen WangWangjun WanYongqi ZhangMinghua ChenWenkui ZhangHui HuangYongping GanXinhui Xia . Plasma enhanced reduction method for synthesis of reduced graphene oxide fiber/Si anode with improved performance. Chinese Chemical Letters, 2024, 35(11): 109510-. doi: 10.1016/j.cclet.2024.109510

    18. [18]

      Fengjun DengTingyu ZhaoXiaochen ZhangKaiyong FengZe LiuYoulin XiangYingjian Yu . Reduced graphene oxide assembled on the Si nanowire anode enabling low passivation and hydrogen evolution for long-life aqueous Si-air batteries. Chinese Chemical Letters, 2025, 36(6): 109897-. doi: 10.1016/j.cclet.2024.109897

    19. [19]

      Biao Fang Runwei Mo . PVDF-based solid-state battery. Chinese Journal of Structural Chemistry, 2024, 43(8): 100347-100347. doi: 10.1016/j.cjsc.2024.100347

    20. [20]

      Qiang-Qiang JiaJia-Qi LuoZhi-Yu XueJing-Song TangWen-Qiang QiuChang-Feng WangZhi-Xu ZhangHai-Feng LuYi ZhangDa-Wei Fu . Enhanced output power density of PVDF/LM composite for piezoelectric sensor. Chinese Chemical Letters, 2025, 36(11): 110471-. doi: 10.1016/j.cclet.2024.110471

Metrics
  • PDF Downloads(0)
  • Abstract views(1400)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return