Citation: Nie Hua-rong, Wang Chao, He Ai-hua. Fabrication and Chemical Crosslinking of Electrospun Trans-polyisoprene Nanofiber Nonwoven[J]. Chinese Journal of Polymer Science, ;2016, 34(6): 697-708. doi: 10.1007/s10118-016-1796-2 shu

Fabrication and Chemical Crosslinking of Electrospun Trans-polyisoprene Nanofiber Nonwoven

  • Corresponding author: He Ai-hua, aihuahe@iccas.ac.cn;ahhe@qust.edu.cn
  • Received Date: 30 November 2015
    Revised Date: 31 December 2015
    Accepted Date: 22 January 2016

    Fund Project: the National Natural Science Foundation of China Nos. 51473083 and 21174074Shandong Provincial Natural Science Fund for Distinguished Young Scholars No. JQ201213Special Foundation of Taishan Mountain Scholar Constructive Program, Shandong Provincial Key R & D program No. 2015GGX102019the National Basic Research Program of China No. 2015CB654700 (2015CB654706)

  • In this work, the optimal electrospinning conditions of trans-polyisoprene (TPI) solutions were evaluated nevertheless its lower glass transition temperature than the room temperature. Subsequently, chemical crosslinking of TPI nonwovens was firstly investigated by vulcanizing at high temperatures in the case of the persistence of nanofiber structure. For this purpose, curing agents of TPI were embedded in TPI nanofibers by co-electrospinning, and then a protect layer was coated on TPI nanofibers by filtering gelatin solution going through TPI nonwoven before the vulcanization at 140-160 ℃. The results showed that the vulcanization of TPI fibrous nonwoven at high temperatures did not destroy the fiber morphology. Interestingly, TPI fibrous nonwovens after vulcanization showed excellent mechanical properties (~17 MPa of tensile strength) that could be comparable to or even higher than that of some bulk rubber materials.
  • 加载中
    1. [1]

      1 Dersch, R., Steinhart, M., Boudriot, U., Greiner, A. and Wendorff, J., Polym. Advan. Technol., 2004, 16: 276

    2. [2]

      2 Reneker, D.H. and Yarin, A.L., Polymer, 2008, 49: 2387

    3. [3]

      3 Shin, Y., Hohman, M., Brenner, M. and Rutledge, G., Appl. Phys. Lett., 2001, 78: 1149

    4. [4]

      4 Yarin, A.L., Koombhongse, S. and Reneker, D.H., J. Appl. Phys., 2001, 90: 4836

    5. [5]

      5 Nie, H., He, A., Zheng, J., Xu, S., Li, J. and Han, C.C., Biomacromolecules, 2008, 9: 1362

    6. [6]

      6 Sawickaand, K. and Gouma, P., J. Nanopart. Res., 2006, 8: 769

    7. [7]

      7 Liand, D. and Xia, Y., Adv. Mater., 2004, 16: 1151

    8. [8]

      8 Nie, H., He, A., Jia, B., Wang, F., Jiang, Q. and Han, C.C., Polymer, 2010, 51: 3344

    9. [9]

      9 Nie, H., Li, J., He, A., Xu, S., Jiang, Q. and Han, C.C., Biomacromolecules, 2010, 11: 2190

    10. [10]

      10 Sill, T.J. and von Recum, H.A., Biomaterials, 2008, 29: 1989

    11. [11]

      11 Lee, K.Y., Jeong, L., Kang, Y.O., Lee, S.J. and Park, W.H., Adv. Drug Delive. Rev., 2009, 61: 1020

    12. [12]

      12 Agarwal, S., Wendorff, J.H. and Greiner, A., Polymer, 2008, 49: 5603

    13. [13]

      13 Huang, Z.M., Zhang, Y.Z., Kotaki, M. and Ramakrishna, S., Compos. Sci. Technol., 2003, 63: 2223

    14. [14]

      14 Song, T.Y. and Yao, C., Chinese J. Polym. Sci., 2010, 28(2): 171

    15. [15]

      15 Stasiak, M., Studer, A., Greiner, A. and Wendorff, J.H., Chem-Eur. J., 2007, 13: 6150

    16. [16]

      16 Zhang, Z., Li, X., Wang, C., Wei, L., Liu, Y. and Shao, C., J. Phys. Chem. C., 2009, 113: 19397

    17. [17]

      17 Bao, Q., Zhang, H., Yang, J.X., Wang, S., Tang, D.Y., Jose, R., Ramakrishna, S., Lim, C.T. and Loh, K.P., Adv. Funct. Mater., 2010, 20: 782

    18. [18]

      18 Gopal, R., Kaur, S., Ma, Z., Chan, C., Ramakrishna, S. and Matsuura, T., J. Membr. Sci., 2006, 281: 581

    19. [19]

      19 Sun, J., Bubel, K., Chen, F., Kissel, T., Agarwal, S. and Greiner, A., Macromol. Rapid Commun., 2010, 31: 2077

    20. [20]

      20 Tian, M., Hu, Q., Wu, H., Zhang, L., Fong, H. and Zhang, L., Mater. Lett., 2011, 65: 3076

    21. [21]

      21 Chen, Q., Saha, P., Kim, N.-G. and Kim, J.K., J. Polym. Eng., 2015, 35: 53

    22. [22]

      22 Bamba, T., Fukusaki, E.i., Nakazawa, Y. and Kobayashi, A., Planta, 2002, 215: 934

    23. [23]

      23 Schilder, H., Goodman, A. and Aldrich, W., Or. Surg. Or. Med. Or. Pa., 1985, 59: 285

    24. [24]

      24 Jones, R. and Wei, Y., J. Biomed. Mater. Res., 1971, 5: 19

    25. [25]

      25 Song, J.S., Huang, B.C. and Yu, D.S., J. Appl. Phys., 2001, 82: 81

    26. [26]

      26 Ratri, P.J., Tashiro, K. and Iguchi, M., Polymer, 2012, 53: 3548

    27. [27]

      27 Su, F., Yan, D., Liu, L., Luo, J., Zhou, E. and Qian, R., Polymer, 1998, 39: 5379

    28. [28]

      28 Fisher, D., Phys. Soc. Sec. B, 1953, 66: 7

    29. [29]

      29 Hu, Q., Wu, H., Zhang, L., Fong, H. and Tian, M., Express Polym. Lett., 2012, 6: 258

    30. [30]

      30 Liu, L., Zhang, F., Hu, S., Zhang, L. and Wen, S., Macromol. Mater. Eng., 2012, 297: 298

    31. [31]

      31 Candia, F., Romano, G., Taglialatela, A. and Vittoria, V., Polym. Bull., 1981, 4: 233

    32. [32]

      32 Qu, L., Huang, G., Nie, Y., Wu, J., Weng, G. and Zhang, P., J. Appl. Polym. Sci., 2011, 120: 1346

    33. [33]

      Fong, H. and Reneker, D.H., "Electrospinning and the formation of nanofibers. In structure formation in polymeric fibers." ed. by Salem, D.R., Hanser, Munich, 2001, p.245

    34. [34]

      34 Srinivasarao, M., Collings, D., Philips, A. and Patel, S., Science, 2001, 292: 79

    35. [35]

      35 Zhao, N., Xie, Q., Weng, L., Wang, S., Zhang, X. and Xu, J., Macromolecules, 2005, 38: 8996

  • 加载中
    1. [1]

      Wei Huang Weiwei Chen Yongxing Tang . Green Mountains and Blue Waters Spanning Nine Centuries: Decrypting “The Picture of a Thousand Miles of Rivers and Mountains” from a Chemical Perspective. University Chemistry, 2024, 39(9): 189-195. doi: 10.12461/PKU.DXHX202312075

    2. [2]

      Guangyao WangZhitong XuYe QiYueguang FangGuiling NingJunwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503

    3. [3]

      Yifei ZhangYuncong XueLaiwei GaoRui LiaoFeng WangFei Wang . Merging non-covalent and covalent crosslinking: En route to single chain nanoparticles. Chinese Chemical Letters, 2024, 35(6): 109217-. doi: 10.1016/j.cclet.2023.109217

    4. [4]

      Xueling YuLixing FuTong WangZhixin LiuNa NiuLigang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167

    5. [5]

      Qianqian SongYunting ZhangJianli LiangSi LiuJian ZhuXingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797

    6. [6]

      Gang LangJing FengBo FengJunlan HuZhiling RanZhiting ZhouZhenju JiangYunxiang HeJunling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113

    7. [7]

      Min FuPan HeSen ZhouWenqiang LiuBo MaShiying ShangYaohao LiRuihan WangZhongping Tan . An unexpected stereochemical effect of thio-substituted Asp in native chemical ligation. Chinese Chemical Letters, 2024, 35(8): 109434-. doi: 10.1016/j.cclet.2023.109434

    8. [8]

      Xianxu ChuLu WangJunru LiHui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105

    9. [9]

      Xu-Hui YueXiang-Wen ZhangHui-Min HeLei QiaoZhong-Ming Sun . Synthesis, chemical bonding and reactivity of new medium-sized polyarsenides. Chinese Chemical Letters, 2024, 35(7): 108907-. doi: 10.1016/j.cclet.2023.108907

    10. [10]

      Fanjun KongYixin GeShi TaoZhengqiu YuanChen LuZhida HanLianghao YuBin Qian . Engineering and understanding SnS0.5Se0.5@N/S/Se triple-doped carbon nanofibers for enhanced sodium-ion batteries. Chinese Chemical Letters, 2024, 35(4): 108552-. doi: 10.1016/j.cclet.2023.108552

    11. [11]

      Ying LiLong-Jie WangYong-Kang ZhouJun LiangBin XiaoJi-Shen Zheng . An improved installation of 2-hydroxy-4-methoxybenzyl (iHmb) method for chemical protein synthesis. Chinese Chemical Letters, 2024, 35(5): 109033-. doi: 10.1016/j.cclet.2023.109033

    12. [12]

      Min HuangRu ChengShuai WenLiangtong LiJie GaoXiaohui ZhaoChunmei LiHongyan ZouJian Wang . Ultrasensitive detection of microRNA-21 in human serum based on the confinement effect enhanced chemical etching of gold nanorods. Chinese Chemical Letters, 2024, 35(9): 109379-. doi: 10.1016/j.cclet.2023.109379

    13. [13]

      Lian SunHonglei WangMing MaTingting CaoLeilei ZhangXingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188

    14. [14]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    15. [15]

      Yan WangHuixin ChenFuda YuShanyue WeiJinhui SongQianfeng HeYiming XieMiaoliang HuangCanzhong Lu . Oxygen self-doping pyrolyzed polyacrylic acid as sulfur host with physical/chemical adsorption dual function for lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(7): 109001-. doi: 10.1016/j.cclet.2023.109001

    16. [16]

      Wenlong LiFeishi ShanQingdong BaoQinghua LiHua GaoLeyong Wang . Supramolecular assembly nanoparticle for trans-epithelial treatment of keratoconus. Chinese Chemical Letters, 2024, 35(10): 110060-. doi: 10.1016/j.cclet.2024.110060

    17. [17]

      Yulong ShiFenbei ChenMengyuan WuXin ZhangRunze MengKun WangYan WangYuheng MeiQionglu DuanYinghong LiRongmei GaoYuhuan LiHongbin DengJiandong JiangYanxiang WangDanqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792

    18. [18]

      Guangchang YangShenglong YangJinlian YuYishun XieChunlei TanFeiyan LaiQianqian JinHongqiang WangXiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722

    19. [19]

      Zhiwei ChenHeyun ShengXue LiMenghan ChenXin LiQiuling Song . Efficient capture of difluorocarbene by pyridinium 1,4-zwitterionic thiolates: A concise synthesis of difluoromethylene-containing 1,4-thiazine derivatives. Chinese Chemical Letters, 2024, 35(4): 108937-. doi: 10.1016/j.cclet.2023.108937

    20. [20]

      Wujun JianMong-Feng ChiouYajun LiHongli BaoSong Yang . Cu-catalyzed regioselective diborylation of 1,3-enynes for the efficient synthesis of 1,4-diborylated allenes. Chinese Chemical Letters, 2024, 35(5): 108980-. doi: 10.1016/j.cclet.2023.108980

Metrics
  • PDF Downloads(0)
  • Abstract views(632)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return