Citation: Fan Zhang-yu, Zhao Yi-li, Zhu Xiao-yue, Luo Yu, Shen Ming-wu, Shi Xiang-yang. Folic Acid Modified Electrospun Poly(vinyl alcohol)/Polyethyleneimine Nanofibers for Cancer Cell Capture Applications[J]. Chinese Journal of Polymer Science, ;2016, 34(6): 755-765. doi: 10.1007/s10118-016-1792-6 shu

Folic Acid Modified Electrospun Poly(vinyl alcohol)/Polyethyleneimine Nanofibers for Cancer Cell Capture Applications

  • Corresponding author: Zhu Xiao-yue, zhu@dhu.edu.cn Shi Xiang-yang, xshi@dhu.edu.cn
  • Received Date: 22 December 2015
    Revised Date: 24 January 2016

    Fund Project: M. Shen and Z. Zhu thank the Fundamental Research Funds for the Central Universities. Y. Zhao thanks the Chinese Universities Scientific Fund No. 101-06-0019014the National Natural Science Foundation of China No. 21405012the State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University No. LK1429X. Zhu gratefully acknowledges the support from Shanghai Pujiang Program No. 14PJ1400400the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning and the Key Laboratory of Textile Science & Technology, Ministry of Education, “111 Project” B07024

  • Capture and detection of metastatic cancer cells are crucial for diagnosis and treatment of malignant neoplasm. Here, we report the use of folic acid (FA) modified electrospun poly(vinyl alcohol) (PVA)/polyethyleneimine (PEI) nanofibers for cancer cell capture applications. Electrospun PVA/PEI nanofibers crosslinked by glutaraldehyde vapor were modified with FA via a poly(ethylene glycol) (PEG) spacer, followed by acetylation of the fiber surface PEI amines. The formed FA-modified nanofibers were well characterized. The morphology of the electrospun PVA/PEI nanofibers is smooth and uniform despite the surface modification. In addition, the FA-modified nanofibers display good hemocompatibility as confirmed by hemolysis assay. Importantly, the developed FA-modified nanofibers are able to specifically capture cancer cells overexpressing FA receptors, which were validated by quantitative cell counting assay and qualitative confocal microscopy analysis. The developed FA-modified PVA/PEI nanofibers may be used for capturing circulating tumor cells for cancer diagnosis applications.
  • 加载中
    1. [1]

      Ashworth, T.R., Med. J. Aust., 1869, 14(3): 146

    2. [2]

      Steeg, P.S., Nat. Med., 2006, 12(8): 895

    3. [3]

      Riethdorf, S., Fritsche, H., Mueller, V., Rau, T., Schindibeck, C., Rack, B., Janni, W., Coith, C., Beck, K., Jaenicke, F., Jackson, S., Gornet, T., Cristofanilli, M. and Pantel, K., Clin. Cancer Res., 2007, 13(3): 920

    4. [4]

      Marx, V., Nature, 2013, 494(7435): 133

    5. [5]

      Paterlini, B.P. and Benali, N.L., Cancer Lett., 2007, 253(2): 180

    6. [6]

      Hosokawa, M., Hayata, T., Fukuda, Y., Arakaki, A., Yoshino, T., Tanaka, T. and Matsunaga, T., Anal. Chem., 2010, 82(15): 6629

    7. [7]

      Vona, G., Sabile, A., Louha, M., Sitruk, V., Romana, S., Schütze, K., Capron, F., Franco, D., Pazzagli, M. and Vekemans, M., Am. J. Pathol., 2000, 156(1): 57

    8. [8]

      Desitter, I., Guerrouahen, B.S., Benali-Furet, N., Wechsler, J., Jaenne, P.A., Kuang, Y.N., Yanagita, M., Wang, L.L., Berkowitz, J.A. and Distel, R.J., Anticancer Res., 2011, 31(2): 427

    9. [9]

      Zheng, S.Y., Lin, H., Liu, J.Q., Balic, M., Datar, R., Cote, R.J. and Tai, Y.C., J. Chromatogr. A, 2007, 1162(2): 154

    10. [10]

      Rosenberg, R., Gertler, R., Friederichs, J., Fuehrer, K., Dahm, M., Phelps, R., Thorban, S., Nekarda, H. and Siewert, J.R., Cytometry, 2002, 49(4): 150

    11. [11]

      Fehm, T., Solomayer, E.F., Meng, S., Tucker, T., Lane, N., Wang, J. and Gebauer, G., Cytotherapy, 2005, 7(2): 171

    12. [12]

      Xu, H.Y., Aguilar, Z.P., Yang, L., Kuang, M., Duan, H.W., Xiong, Y.H., Wei, H. and Wang, A., Biomaterials, 2011, 32(36): 9758

    13. [13]

      Song, E.Q., Hu, J., Wen, C.Y., Tian, Z.Q., Yu, X., Zhang, Z.L., Shi, Y.B. and Pang, D.W., ACS Nano, 2011, 5(2): 761

    14. [14]

      Hu, X.G., Wei, C.W., Xia, J.J., Pelivanov, I., O'Donnell, M. and Gao, X.H., Small, 2013, 9(12): 2046

    15. [15]

      Jo, S.M., Lee, J.J., Heu, W. and Kim, H.S., Small, 2015, 11(16): 1975

    16. [16]

      Xiao, J.R., He, W.Q., Zhang, Z.T., Zhang, W.Y., Cao, Y.P., He, R.X. and Chen, Y., RSC Adv., 2015, 5(64): 52161

    17. [17]

      Nagrath, S., Sequist, L.V., Maheswaran, S., Bell, D.W., Irimia, D., Ulkus, L., Smith, M.R., Kwak, E.L., Digumarthy, S. and Muzikansky, A., Nature, 2007, 450(7173): 1235

    18. [18]

      Zhang, N.G., Deng, Y.L., Tai, Q.D., Cheng, B., Zhao, L.B., Shen, Q.L., He, R.X., Hong, L.Y., Liu, W., Guo, S.S., Liu, K., Tseng, H.R., Xiong, B. and Zhao, X.Z., Adv. Mater., 2012, 24(20): 2756

    19. [19]

      Hou, S., Zhao, L.B., Shen, Q.L., Yu, J.H., Ng, C., Kong, X.J., Wu, D.X., Song, M., Shi, X.H., Xu, X.C., OuYang, W.H., He, R.X., Zhao, X.Z., Lee, T., Brunicardi, F.C., Garcia, M.A., Ribas, A., Lo, R.S. and Tseng, H.R., Angew. Chem., Int. Ed., 2013, 52(12): 3379

    20. [20]

      Greiner, A. and Wendorff, J.H., Angew. Chem., Int. Ed., 2007, 46(30): 5670

    21. [21]

      Huang, Z.M., Zhang, Y.Z., Kotaki, M. and Ramakrishna, S., Compos. Sci. Technol., 2003, 63(15): 2223

    22. [22]

      Reneker, D.H. and Chun, I., Nanotechnology, 1996, 7(3): 216

    23. [23]

      Kim, B., Park, H., Lee, S.H. and Sigmund, W.M., Mater. Lett., 2005, 59(7): 829

    24. [24]

      Demir, M.M., Yilgor, I., Yilgor, E. and Erman, B., Polymer, 2002, 43(11): 3303

    25. [25]

      Reneker, D.H. and Yarin, A.L., Polymer, 2008, 49(10): 2387

    26. [26]

      Yoon, K., Hsiao, B.S. and Chu, B., J. Mater. Chem., 2008, 18(44): 5326

    27. [27]

      Bazhban, M., Nouri, M. and Mokhtari, J., Chinese J. Polym. Sci., 2013, 31(10): 1343

    28. [28]

      Li, M.Y., Bidez, P., Guterman-Tretter, E., Guo, Y., MacDiarmid, A.G., Lelkes, P.I., Yuan, X.B., Yuan, X.Y., Sheng, J. and Li, H., Chinese J. Polym. Sci., 2007, 25(4): 331

    29. [29]

      Song, T.Y. and Yao, C., Chinese J. Polym. Sci., 2010, 28(2): 171

    30. [30]

      Zha, Z.B., Cohn, C., Dai, Z.F., Qiu, W.G., Zhang, J.H. and Wu, X.Y., Adv. Mater., 2011, 23(30): 3435

    31. [31]

      Wang, Y.Y., Lü, L.X., Feng, Z.Q., Xiao, Z.D. and Huang, N.P., Biomed. Mater., 2010, 5(5): 054112

    32. [32]

      Ma, K., Chan, C.K., Liao, S.S., Hwang, W.Y., Feng, Q. and Ramakrishna, S., Biomaterials, 2008, 29(13): 2096

    33. [33]

      Hu, Y., Gan, L., Li, Q.X., Tao, H., Zhang, A.Y. and Feng, Z.G., Chinese J. Polym. Sci., 2014, 32(12): 1714

    34. [34]

      Zhao, Y.L., Zhu, X.Y., Liu, H., Luo, Y., Wang, S.G., Shen, M.W., Zhu, M.F. and Shi, X.Y., J. Mater. Chem. B, 2014, 2(42): 7384

    35. [35]

      Fang, X., Ma, H., Xiao, S.L., Shen, M.W., Guo, R., Cao, X.Y. and Shi, X.Y., J. Mater. Chem., 2011, 21(12): 4493

    36. [36]

      Zhang, Y., Liu, J.M. and Yan, X.P., Anal. Chem., 2012, 85(1): 228

    37. [37]

      Patnaik, S. and Gupta, K.C., Expert Opin. Drug Delivery, 2013, 10(2): 215

    38. [38]

      Park, K., Lee, M.Y., Kim, K.S. and Hahn, S.K., Biomaterials, 2010, 31(19): 5258

    39. [39]

      Zhao, Y.L., Fan, Z.Y., Shen, M.W. and Shi, X.Y., Adv. Mater. Interfaces, 2015, 2: 1500256

    40. [40]

      Zhao, Y.L., Fan, Z.Y., Shen, M.W. and Shi, X.Y., RSC Adv., 2015, 5(86): 70439

    41. [41]

      Li, J.C., Zheng, L.F., Cai, H.D., Sun, W.J., Shen, M.W., Zhang, G.X. and Shi, X.Y., Biomaterials, 2013, 34(33): 8382

    42. [42]

      Feng, X.H., Zhang, S.K., Wu, H. and Lou, X., Colloids Surf., B, 2015, 125: 197

  • 加载中
    1. [1]

      Qiuyu Ming Huijun Jiang Zhihao Zhang . A Sightseeing Tour of Folic Acid Processing Plant. University Chemistry, 2024, 39(9): 11-15. doi: 10.12461/PKU.DXHX202404092

    2. [2]

      Linshan PengQihang PengTianxiang JinZhirong LiuYong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891

    3. [3]

      Weijian ZhangXianyu DengLiying WangJian WangXiuting GuoLianggui HuangXinyi WangJun WuLinjia Jiang . Poly(ferulic acid) nanocarrier enhances chemotherapy sensitivity of acute myeloid leukemia by selectively targeting inflammatory macrophages. Chinese Chemical Letters, 2024, 35(9): 109422-. doi: 10.1016/j.cclet.2023.109422

    4. [4]

      Guangyao WangZhitong XuYe QiYueguang FangGuiling NingJunwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503

    5. [5]

      Yang LiuYan LiuKaiyin YangZhiruo ZhangWenbo ZhangBingyou YangHua LiLixia Chen . A selective HK2 degrader suppresses SW480 cancer cell growth by degrading HK2. Chinese Chemical Letters, 2024, 35(8): 109264-. doi: 10.1016/j.cclet.2023.109264

    6. [6]

      Boran ChengLei CaoChen LiFang-Yi HuoQian-Fang MengGanglin TongXuan WuLin-Lin BuLang RaoShubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969

    7. [7]

      Jing ChenPeisi XiePengfei WuYu HeZian LinZongwei Cai . MALDI coupled with laser-postionization and trapped ion mobility spectrometry contribute to the enhanced detection of lipids in cancer cell spheroids. Chinese Chemical Letters, 2024, 35(4): 108895-. doi: 10.1016/j.cclet.2023.108895

    8. [8]

      Yuanzheng WangChen ZhangShuyan HanXiaoli KongChangyun QuanJun WuWei Zhang . Cancer cell membrane camouflaged biomimetic gelatin-based nanogel for tumor inhibition. Chinese Chemical Letters, 2024, 35(11): 109578-. doi: 10.1016/j.cclet.2024.109578

    9. [9]

      Zhi LiShuya PanYuan TianShaowei LiuWeifeng WeiJinlin WangTianfeng ChenLing Wang . Selenium nanoparticles enhance the chemotherapeutic efficacy of pemetrexed against non-small cell lung cancer. Chinese Chemical Letters, 2024, 35(12): 110018-. doi: 10.1016/j.cclet.2024.110018

    10. [10]

      Yanfei LiuYaqin HuYifu TanQiwen ChenZhenbao Liu . Tumor acidic microenvironment activatable DNA nanostructure for precise cancer cell targeting and inhibition. Chinese Chemical Letters, 2025, 36(1): 110289-. doi: 10.1016/j.cclet.2024.110289

    11. [11]

      Tong TongLezong ChenSiying WuZhong CaoYuanbin SongJun Wu . Establishment of a leucine-based poly(ester amide)s library with self-anticancer effect as nano-drug carrier for colorectal cancer treatment. Chinese Chemical Letters, 2024, 35(12): 109689-. doi: 10.1016/j.cclet.2024.109689

    12. [12]

      Lixian FuYiyun TanYue DingWeixia QingYong Wang . Water–soluble and polarity–sensitive near–infrared fluorescent probe for long–time specific cancer cell membranes imaging and C. Elegans label. Chinese Chemical Letters, 2024, 35(4): 108886-. doi: 10.1016/j.cclet.2023.108886

    13. [13]

      Qianqian SongYunting ZhangJianli LiangSi LiuJian ZhuXingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797

    14. [14]

      Gang LangJing FengBo FengJunlan HuZhiling RanZhiting ZhouZhenju JiangYunxiang HeJunling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113

    15. [15]

      Tengfei YangJingshuai XiaoXiao SunYan SongChaozheng He . Facilitating the polysulfides conversion kinetics by porous LaOCl nanofibers towards long-cycling lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 109691-. doi: 10.1016/j.cclet.2024.109691

    16. [16]

      Haojie SongLaiyu LuoSiyu WangGuo ZhangBaojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347

    17. [17]

      Fanjun KongYixin GeShi TaoZhengqiu YuanChen LuZhida HanLianghao YuBin Qian . Engineering and understanding SnS0.5Se0.5@N/S/Se triple-doped carbon nanofibers for enhanced sodium-ion batteries. Chinese Chemical Letters, 2024, 35(4): 108552-. doi: 10.1016/j.cclet.2023.108552

    18. [18]

      Manman OuYunjian ZhuJiahao LiuZhaoxuan LiuJianjun WangJun SunChuanxiang QinLixing Dai . Polyvinyl alcohol fiber with enhanced strength and modulus and intense cyan fluorescence based on covalently functionalized graphene quantum dots. Chinese Chemical Letters, 2025, 36(2): 110510-. doi: 10.1016/j.cclet.2024.110510

    19. [19]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    20. [20]

      Pengcheng SuShizheng ChenZhihong YangNingning ZhongChenzi JiangWanbin Li . Vapor-phase postsynthetic amination of hypercrosslinked polymers for efficient iodine capture. Chinese Chemical Letters, 2024, 35(9): 109357-. doi: 10.1016/j.cclet.2023.109357

Metrics
  • PDF Downloads(0)
  • Abstract views(744)
  • HTML views(24)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return