Citation: Shi Mei, Duan Xin-rui, Liu Zhao-tie, Liu Zhong-wen, Jiang Jin-qiang. Diethanol Ammonium-borate Based Polybetaine with Tunable UCST Phase Transition[J]. Chinese Journal of Polymer Science, ;2016, 34(6): 777-784. doi: 10.1007/s10118-016-1790-8 shu

Diethanol Ammonium-borate Based Polybetaine with Tunable UCST Phase Transition

  • Corresponding author: Jiang Jin-qiang, jiangjq@snnu.edu.cn
  • Received Date: 27 December 2015
    Revised Date: 26 January 2016

    Fund Project: the Natural Science Basic Research Plan in Shaanxi Province of China NSBRP-SPC 2014JM2051the Program for Changjiang Scholars and Innovative Research Team in Universities IRT 14R33the National Natural Science Foundation of China No. 21374056the Program of Introducing Talents of Discipline to Universities B14041Shaanxi Innovative Research Team for Key Science and Technology 2012KCT-21, 2013KCT-17

  • A betaine-type styrene monomer with the quaternary ammonium-borate anion inner-salt pair was synthesized through the quaternization reaction and polymerized to afford the target polybetaine of poly(4-vinylbenzyl methyl-diethanol ammonium borate) (PVMAB). The chemical structures of the monomer and polymer were well demonstrated with 1H-NMR and 11B-NMR spectra analysis. The thermal-sensitive experiment showed that PVMAB in water afforded gradually well-defined sigmoidal transmittance-temperature (T-t) curves along with the increasing polymer concentration. However, the phase transition temperatures at the bottom of the S-shaped curves were always below 10 ℃ due to the very weak zwitterionic association of the ammonium-borate inner-salt pairs. The UCST phase transition could also be tuned by changing the ethanol content in the ethanol/water mixture. And the cytotoxicity experiment demonstrated the good biomimetic property of PVMAB. This study enriches the toolbox of polybetaines by introducing the quaternary ammonium-borate anion zwitterionic pair in the repeat units, therefore broadens the scope of synthetic polybetaines.
  • 加载中
    1. [1]

      Duncan, A.J., Leo, D.J. and Long, T.E., Macromolecules, 2008, 41(21): 7765

    2. [2]

      Ramos, J., Forcada, J. and Hidalgo-Alvarez, R., Chem. Rev., 2014, 114(1): 367

    3. [3]

      Schlenoff, J.B., Langmuir, 2014, 30(32): 9625

    4. [4]

      Lowe, A.B. and McCormick, C.L., Chem. Rev., 2002, 102(11): 4177

    5. [5]

      Willcock, H., Lu, A., Hansell, C.F., Chapman, E., Collins, I.R. and O'Reilly, R.K., Polym. Chem., 2014, 5: 1023

    6. [6]

      Azzaroni, O., Brown, A.A. and Huck, W.T.S., Angew. Chem., 2006, 118(11): 1802

    7. [7]

      Li, W.S., Huang, L.W., Ying, X.Y., Jian, Y., Hong, Y., Hu, F.Q. and Du, Y.Z., Angew. Chem., 2015, 127(10): 3169

    8. [8]

      Izumrudov, V.A., Domashenko, N.I., Zhiryakova, M.V. and Davydova, O.V., J. Phys. Chem. B, 2005, 109(37): 17391

    9. [9]

      Bohrisch, J., Schimmel, T., Engelhardt, H. and Jaeger, W., Macromolecules, 2002, 35(10): 4143

    10. [10]

      Azevedo, M.C.C. and Cavaleiro, A.M.V., J. Chem. Educ., 2012, 89(6): 767

    11. [11]

      Cruz, G., J. Chem. Educ., 2013, 90(12): 1645

    12. [12]

      Pelton, R., Hu, Z., Ketelson, H. and Meadows, D., Langmuir, 2009, 25(1): 192

    13. [13]

      Shim, J., Kim, D.G., Kim, H.J., Lee, J.H. and Lee, J.C., ACS Appl. Mater. Inter., 2015, 7(14): 7690

    14. [14]

      Steinberg, H. and Hunter, D.L., Ind. Eng. Chem., 1957, 49(2): 174

    15. [15]

      Shen, G.Q., Zheng, Z., Wan, Y., Xu, X.D., Cao, L.L., Yue, Q.X., Sun, T.J. and Liu, A.R., Wear, 2000, 246: 55

    16. [16]

      Tanner, D.W. and Bruice, T.C., J. Am. Chem. Soc., 1967, 89(26): 6954

    17. [17]

      Nizioł, J., Zieliński, Z., Leś, A., Dąbrowska, M., Rode, W. and Ruman, T., Bioorgan. Med. Chem., 2014, 22(15): 3906

    18. [18]

      Kim, D.J., Mun, S.D., Yoon, S., Oh, C.H., Park, H.R., You, T.S., Lee, J. and Kim, Y., Polyhedron, 2011, 30(6): 1076

    19. [19]

      Qi, T., Sonoda, A., Makita, Y., Kanoh, H., Ooi, K. and Hirotsu, T., Ind. Eng. Chem. Res., 2002, 41(2): 133

    20. [20]

      Liang, Z.Y., Ma, L.J., Lu, C.X. and Zhai, Y.J., J. Surfactants Deterg., 2012, 15(2): 217

    21. [21]

      Miyazaki, Y., Yoshimura, K., Miura, Y., Sakashita, H. and Ishimaru, K., Polyhedron, 2003, 22(6): 909

    22. [22]

      Taler, G., Schejter, A. and Navon, G., Inorg. Chim. Acta, 1998, 273: 388

    23. [23]

      Miyazaki, Y., Fujimori, T., Okita, H., Hirano, T. and Yoshimura, K., Dalton Trans., 2013, 42(29): 10473

    24. [24]

      Zhang, Q.L. and Hoogenboom, R., Prog. Polym. Sci., 2015, 48: 122

    25. [25]

      Noskov, S.Y., Lamoureux, G. and Roux, B., J. Phys. Chem. B, 2005, 109(14): 6705

    26. [26]

      Bustamante, P., Navarro, J., Romero, S. and Escalera, B., J. Pharm. Sci., 2002, 91(3): 874

    27. [27]

      Hoogenboom, R., Rogers, S., Can, A., Becer, C.R., Guerrero-Sanchez, C., Wouters, D., Hoeppener, S. and Schubert, U.S., Chem. Commun., 2009, 37: 5582

    28. [28]

      Twaites, B.R., Alarcón, C.H., Lavigne, M., Saulnier, A., Pennadam, S.S., Cunliffe, D., Górecki, D.C. and Alexander, C., J. Control. Release, 2005, 108: 472

    29. [29]

      Tian, M., Cheng, R.D., Zhang, J., Liu, Z.T., Liu, Z.W. and Jiang, J.Q., Langmuir, 2016, 32(1): 12

    30. [30]

      Geng, C.Z., Hu, X., Yang, G.H., Zhang, Q., Chen, F. and Fu, Q., Chinese J. Polym. Sci., 2015, 33(1): 61

    31. [31]

      Hu, Y., Gan, L., Li, Q.X., Tao, H., Ye, L., Zhang, A.Y. and Feng, Z.G., Chinese J. Polym. Sci., 2014, 32(12): 1714

  • 加载中
    1. [1]

      Yangfeifei Ou Xiao-Liang Zhou You-Zhao Lan Jian-Wen Cheng . Borosilicates as deep-ultraviolet transparent nonlinear optical crystals: Structural motifs, performance limits and future directions. Chinese Journal of Structural Chemistry, 2025, 44(9): 100708-100708. doi: 10.1016/j.cjsc.2025.100708

    2. [2]

      Peng GuoShicheng DongXiang-Gui ZhangBing-Bin YangJun ZhuKe-Yin Ye . Cobalt-catalyzed migratory carbon-carbon cross-coupling of borabicyclo[3.3.1]nonane (9-BBN) borates. Chinese Chemical Letters, 2025, 36(4): 110052-. doi: 10.1016/j.cclet.2024.110052

    3. [3]

      Saima PerveenXicheng WangTao LiLinghua WangShuai ZhangYizhao OuyangXue ZhaoLiang XuPengfei Li . Enantioconvergent reductive amidation of benzyl ammonium salts for synthesis of α-chiral amides. Chinese Chemical Letters, 2026, 37(1): 111779-. doi: 10.1016/j.cclet.2025.111779

    4. [4]

      Ruilong GengLingzi PengChang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433

    5. [5]

      Quanxing MaoZhengliang WangZhinan HuZiqi YangHui LiYali YaoZijun YongTianyi Ma . Facial detection of formaldehyde by using acidichromic carbon dots and the reaction between formaldehyde and ammonium chloride. Chinese Chemical Letters, 2025, 36(7): 110499-. doi: 10.1016/j.cclet.2024.110499

    6. [6]

      Xiaojun WangYizhou ZhangLinwei GuoJianwei LiPeng WangLei YangZhiming Liu . V2CTX MXene-derived ammonium vanadate with robust carbon skeleton for superior rate aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(8): 111231-. doi: 10.1016/j.cclet.2025.111231

    7. [7]

      Zerui Deng Xincheng Liang Xingfa Chen Yuquan Gou Anning Wang Peixin Xie Qian Liu Huan Wen Shibin Yin . The role of ammonium formate electrolyte additive for aqueous zinc-ion batteries: Inducing Zn(002) deposition and suppressing hydrogen evolution. Chinese Journal of Structural Chemistry, 2025, 44(11): 100706-100706. doi: 10.1016/j.cjsc.2025.100706

    8. [8]

      Weijian ZhangXianyu DengLiying WangJian WangXiuting GuoLianggui HuangXinyi WangJun WuLinjia Jiang . Poly(ferulic acid) nanocarrier enhances chemotherapy sensitivity of acute myeloid leukemia by selectively targeting inflammatory macrophages. Chinese Chemical Letters, 2024, 35(9): 109422-. doi: 10.1016/j.cclet.2023.109422

    9. [9]

      Lan YangYu LiMou JiangRui ZhouHengjiang CongMinghui YangLei ZhangShenhui LiYunhuang YangMaili LiuXin ZhouZhong-Xing JiangShizhen Chen . Fluorinated [2]rotaxanes as sensitive 19F MRI agents: Threading for higher sensitivity. Chinese Chemical Letters, 2024, 35(10): 109512-. doi: 10.1016/j.cclet.2024.109512

    10. [10]

      Junmei FANWei LIURuitao ZHUChenxi QINXiaoling LEIHaotian WANGJiao WANGHongfei HAN . High sensitivity detection of baicalein by N, S co-doped carbon dots and their application in biofluids. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2009-2020. doi: 10.11862/CJIC.20240120

    11. [11]

      Huihui LIUBaichuan ZHAOChuanhui WANGZhi WANGCongyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059

    12. [12]

      Shangda QuYiming YuanXu YeWentao Xu . High sensitivity artificial synapses using printed high-transmittance ITO fibers for neuromorphic computing. Chinese Chemical Letters, 2024, 35(12): 110030-. doi: 10.1016/j.cclet.2024.110030

    13. [13]

      Zhaoyu Liu Dan Wang Guohui Liu Huili Zhang He Li Xiaoju Li Ruihu Wang . Sound-Bioinspired Dual-Conductive Hydrogel Sensors for High Sensitivity and Environmental Weatherability. Chinese Journal of Structural Chemistry, 2025, 44(8): 100628-100628. doi: 10.1016/j.cjsc.2025.100628

    14. [14]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    15. [15]

      Ruizhi Yang Xia Li Weiping Guo Zixuan Chen Hongwei Ming Zhong-Zhen Luo Zhigang Zou . New thermoelectric semiconductors Pb5Sb12+xBi6-xSe32 with ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(3): 100268-100268. doi: 10.1016/j.cjsc.2024.100268

    16. [16]

      Chaozheng HePei ShiDonglin PangZhanying ZhangLong LinYingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116

    17. [17]

      Zhiqing GeZuxiong PanShuo YanBaoying ZhangXiangyu ShenMozhen WangXuewu Ge . Novel high-temperature thermochromic polydiacetylene material and its application as thermal indicator. Chinese Chemical Letters, 2024, 35(11): 109850-. doi: 10.1016/j.cclet.2024.109850

    18. [18]

      Guizhi ZhuJunrui TanLongfei TanQiong WuXiangling RenChanghui FuZhihui ChenXianwei Meng . Growth of CeCo-MOF in dendritic mesoporous organosilica as highly efficient antioxidant for enhanced thermal stability of silicone rubber. Chinese Chemical Letters, 2025, 36(1): 109669-. doi: 10.1016/j.cclet.2024.109669

    19. [19]

      Shuai Liang Wen-Jing Jiang Ji-Xiang Hu . Achieving colossal anisotropic thermal expansion via synergism of spin crossover and rhombus deformation. Chinese Journal of Structural Chemistry, 2025, 44(2): 100430-100430. doi: 10.1016/j.cjsc.2024.100430

    20. [20]

      Shi LiWenshuai ZhaoYong QiWenbin NiuWei MaBingtao TangShufen Zhang . Hydrogen bonding induced ultra-highly thermal stability of azo dyes for color films. Chinese Chemical Letters, 2025, 36(9): 110653-. doi: 10.1016/j.cclet.2024.110653

Metrics
  • PDF Downloads(0)
  • Abstract views(1337)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return