Citation: Chakraborty Samarshi, Kumar Manish, Suresh Kelothu, Pugazhenthi G.. Investigation of Structural, Rheological and Thermal Properties of PMMA/ONi-Al LDH Nanocomposites Synthesized via Solvent Blending Method: Effect of LDH Loading[J]. Chinese Journal of Polymer Science, ;2016, 34(6): 739-754. doi: 10.1007/s10118-016-1786-4 shu

Investigation of Structural, Rheological and Thermal Properties of PMMA/ONi-Al LDH Nanocomposites Synthesized via Solvent Blending Method: Effect of LDH Loading

  • Corresponding author: Pugazhenthi G., pugal@iitg.ernet.in
  • Received Date: 16 November 2015
    Revised Date: 19 January 2016
    Accepted Date: 24 January 2016

  • This article addresses the synthesis of organically tailored Ni-Al layered double hydroxide (ONi-Al LDH) and its use in the fabrication of exfoliated poly(methyl methacrylate) (PMMA) nanocomposites. The pristine Ni-Al LDH was initially synthesized by co-precipitation method and subsequently modified using sodium dodecyl sulfate to obtain ONi-Al LDH. Nanocomposites of PMMA containing various amounts of modified Ni-Al LDH (3 wt%-7 wt%) were synthesized via solvent blending method to investigate the influence of LDH content on the properties of PMMA matrix. Several characterization methods such as X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), rheological analysis, differential scanning calorimetry (DSC) and thermo gravimetric analysis (TGA), were employed to examine the structural, viscoelastic and thermal properties of PMMA/OLDH nanocomposites. The results of XRD and TEM examination confirm the formation of partially exfoliated PMMA/OLDH nanocomposites. The FTIR results elucidate that the characteristic bands for both pure PMMA and modified LDH are present in the spectra of PMMA/OLDH nanocomposites. Rheological analyses were carried out to examine the adhesion between polymer matrix and fillers present in the nanocomposite sample. The TGA data indicate that the PMMA nanocomposites exhibit higher thermal stability when compared to pure PMMA. The thermal decomposition temperature of PMMA/OLDH nanocomposites increases by 28 K compared to that of pure PMMA at 15% weight loss as a point of reference. In comparison with pure PMMA, the PMMA nanocomposite containing 7 wt% LDH demonstrates improved glass transition temperature (Tg) of around 3 K. The activation energy (Ea), reaction orders (n) and reaction mechanism of thermal degradation of PMMA/OLDH nanocomposites were evaluated using different kinetic models. Water uptake capacity of the PMMA/OLDH nanocomposites is less than that of the pure PMMA.
  • 加载中
    1. [1]

      Alexandre, M, Dubois, P. Mater. Sci. Eng.[J]. R-Rep, 2000,281.

    2. [2]

      Usuki, A., Kojima, Y., Kawasumi, M., Okada, A., Fukushima, Y., Kurauchi, T. and Kamigaito, O., J. Mater. Res., 1993, 8: 1179

    3. [3]

      Lan, T. and Pinnavaia, T.J., Chem. Mater., 1994, 6: 2216

    4. [4]

      Giannelis, E.P., Adv. Mater., 1996, 8: 29

    5. [5]

      Messersmith, P.B. and Giannelis, E.P., Chem. Mater., 1994, 6: 1719

    6. [6]

      Kojima, Y., Fukumori, K., Usuki, A., Okada, A. and Kurauchi, T., J. Mater. Sci. Lett., 1993, 12: 889

    7. [7]

      Wang, L., Xie, X., Su, S., Feng, J. and Wilkie, C.A., Polym. Degrad. Stab., 2010, 95: 572

    8. [8]

      Chen, W. and Qu, B., Chem. Mater., 2003, 15: 3208

    9. [9]

      Paul, D. and Robeson, L., Polymer, 2008 49: 3187

    10. [10]

      Wang, D.Y., Das, A., Leuteritz, A., Boldt, R., Häußler, L., Wagenknecht, U. and Heinrich, G., Polym. Degrad. Stab., 2011, 96: 285

    11. [11]

      Du, L., Qu, B. and Zhang, M., Polym. Degrad. Stab., 2007, 92: 497

    12. [12]

      Qiu, L., Chen, W. and Qu, B., Colloid. Polym. Sci., 2005, 283: 1241

    13. [13]

      Wang, G.A., Wang, C.C. and Chen, C.Y., Polym. Degrad. Stab., 2006, 91: 2443

    14. [14]

      Qiu, L. and Qu, B., J. Colloid Interface Sci., 2006, 301: 347

    15. [15]

      Huskić, M. and Žigon, M., Eur. Polym. J., 2007, 43: 4891

    16. [16]

      Krishna, S.V. and Pugazhenthi, G., J. Exp. Nanosci., 2012, 8: 19

    17. [17]

      Sahu, B. and Pugazhenthi, G., J. Appl. Polym. Sci., 2011, 120: 2485

    18. [18]

      Strawhecker, K.E. and Manias, E., Chem. Mater., 2000, 12: 2943

    19. [19]

      Unnikrishnan, L., Mohanty, S., Nayak, S.K. and Ali, A., Mater. Sci. Eng., A, 2011, 528: 3943

    20. [20]

      Leroux, F. and Besse, J.P., Chem. Mater., 2001, 13: 3507

    21. [21]

      Nalawade, P., Aware, B., Kadam, V. and Hirlekar, R., J. Sci. Ind. Res., 2009, 68: 267

    22. [22]

      Hong, N., Song, L., Wang, B., Stec., A.A., Hull, T.R., Zhan, J. and Hu, Y., Mater. Res. Bull., 2014, 49: 657

    23. [23]

      Li., M., Zhu, J.E., Zhang, L., Chen, X., Zhang, H., Zhang, F., Xu, S. and Evans, D.G., Nanoscale, 2011, 3: 4240

    24. [24]

      Wimalasiri, Y., Fan, R., Zhao, X.S. and Zou, L., Electrochim. Acta, 2014, 134: 127

    25. [25]

      Zhu, H., Liu, Q., Li, Z., Liu, J., Jing, X., Zhang, H. and Wang, J., RSC Adv., 2015, 5: 49204

    26. [26]

      Nyambo, C., Chen, D., Su, S. and Wilkie, C.A., Polym. Degrad. Stab., 2009, 94: 1298

    27. [27]

      Manzi-Nshuti, C., Wang, D., Hossenlopp, J.M. and Wilkie, C.A., Polym. Degrad. Stab., 2009, 94: 705

    28. [28]

      Li, B., Hu, Y., Liu, J., Chen, Z. and Fan, W., Colloid. Polym. Sci., 2003, 281: 998

    29. [29]

      Chen, W. and Qu, B., Polym. Degrad. Stab., 2005, 90: 162

    30. [30]

      Zhou, Z., Wang, S., Lu, L., Zhang, Y. and Zhang, Y., Compos. Sci. Technol., 2007, 67: 1861

    31. [31]

      Ivanov, I., Muke, S., Kao, N. and Bhattacharya, S.N., Polymer, 2001, 42: 9809

    32. [32]

      Al-Saleh, M.H. and Sundararaj, U., Composites Part A, 2011, 42: 2126

    33. [33]

      Ding, P. and Qu, B., J. Colloid Interface Sci., 2005, 291: 13

    34. [34]

      Gilman, J.W., Jackson, C.L., Morgan, A.B., Harris, Jr. R., Manias, E., Giannelis, E. P., Wuthenow, M., Hilton, D. and Philips, S.H., Chem. Mater., 2002, 12: 1886

    35. [35]

      Tomar, A., Mahendia, S. and Kumar, S., Adv. Appl. Sci. Res., 2011, 2: 65

    36. [36]

      Morgan, A.B. and Gilman, J.W., J. Appl. Polym. Sci., 2003, 87: 1329

    37. [37]

      Mohanty, S. and Nayak, S.K., J. Thermoplast. Compos., 2010, 23: 623

    38. [38]

      Shen, Z., Simon, G.P. and Cheng, Y.B., J. Appl. Polym. Sci., 2004, 92: 2101

    39. [39]

      Stretz, H.A., Paul, D.R., Li, R., Keskkula, H. and Cassidy, P.E., Polymer, 2005, 46: 2621

    40. [40]

      Coats, A.W. and Redfern, J.P., Nature, 1964, 201: 68

    41. [41]

      Chen, Y. and Wang, Q., Polym. Degrad. Stab., 2007, 92: 280

    42. [42]

      Krishna, S. and Pugazhenthi, G., J. Appl. Polym. Sci., 2011, 120: 1322

    43. [43]

      Criado, J.M., Málek, J. and Ortega, A., Thermochim. Acta, 1989, 147: 377

    44. [44]

      Senum, G.I. and Yang, R.T., J. Therm. Anal., 1977, 11: 445

    45. [45]

      Flynn, J.H., Thermochim. Acta, 1997, 300: 83

    46. [46]

      Park, S.J., Li, K. and Hong, S.K., J. Ind. Eng. Chem., 2005, 11: 561

    47. [47]

      Zhang, H.B., Zheng, W.G., Yan, Q., Jiang, Z.G. and Yu, Z.Z., Carbon, 2012, 50: 5117

    48. [48]

      Majid, M., Hassan, E.D., Davoud, A. and Saman, M., Composites Part B, 2011, 42: 2038

  • 加载中
    1. [1]

      Sinong WangShanshan JinXue YangYanyan HuangPeng LiuYi TangYuliang Yang . Development of Mg-Al LDH and LDO as novel protective materials for deacidification of paper-based relics. Chinese Chemical Letters, 2024, 35(9): 109890-. doi: 10.1016/j.cclet.2024.109890

    2. [2]

      Yuchen Guo Xiangyu Zou Xueling Wei Weiwei Bao Junjun Zhang Jie Han Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206

    3. [3]

      Bingwei WangYihong DingXiao Tian . Benchmarking model chemistry composite calculations for vertical ionization potential of molecular systems. Chinese Chemical Letters, 2025, 36(2): 109721-. doi: 10.1016/j.cclet.2024.109721

    4. [4]

      Mianfeng LiHaozhi WangZijun YangZexiang YinYuan LiuYingmei BianYang WangXuerong ZhengYida Deng . Synergistic enhancement of alkaline hydrogen evolution reaction by role of Ni-Fe LDH introducing frustrated Lewis pairs via vacancy-engineered. Chinese Chemical Letters, 2025, 36(3): 110199-. doi: 10.1016/j.cclet.2024.110199

    5. [5]

      Tao WeiJiahao LuPan ZhangQi ZhangGuang YangRuizhi YangDaifen ChenQian WangYongfu Tang . An intermittent lithium deposition model based on bimetallic MOFs derivatives for dendrite-free lithium anode with ultrahigh areal capacity. Chinese Chemical Letters, 2024, 35(8): 109122-. doi: 10.1016/j.cclet.2023.109122

    6. [6]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

    7. [7]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    8. [8]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    9. [9]

      Ruilong GengLingzi PengChang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433

    10. [10]

      Ling Tang Yan Wan Yangming Lin . Lowering the kinetic barrier via enhancing electrophilicity of surface oxygen to boost acidic oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100345-100345. doi: 10.1016/j.cjsc.2024.100345

    11. [11]

      Meng ShanYongmei YuMengli SunShuping YangMengqi WangBo ZhuJunbiao Chang . Bifunctional organocatalyst-catalyzed dynamic kinetic resolution of hemiketals for synthesis of chiral ketals via hydrogen bonding control. Chinese Chemical Letters, 2025, 36(1): 109781-. doi: 10.1016/j.cclet.2024.109781

    12. [12]

      Yongheng Ren Yang Chen Hongwei Chen Lu Zhang Jiangfeng Yang Qi Shi Lin-Bing Sun Jinping Li Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394

    13. [13]

      Ruixue LiuXiaobing DingQiwei LangGen-Qiang ChenXumu Zhang . Enantioselective and divergent construction of chiral amino alcohols and oxazolidin-2-ones via Ir-f-phamidol-catalyzed dynamic kinetic asymmetric hydrogenation. Chinese Chemical Letters, 2025, 36(3): 110037-. doi: 10.1016/j.cclet.2024.110037

    14. [14]

      Guo-Hong GaoRun-Ze ZhaoYa-Jun WangXiao MaYan LiJian ZhangJi-Sen Li . Core–shell heterostructure engineering of CoP nanowires coupled NiFe LDH nanosheets for highly efficient water/seawater oxidation. Chinese Chemical Letters, 2024, 35(8): 109181-. doi: 10.1016/j.cclet.2023.109181

    15. [15]

      Lili WangYa YanRulin LiXujie HanJiahui LiTing RanJialu LiBaichuan XiongXiaorong SongZhaohui YinHong WangQingjun ZhuBowen ChengZhen Yin . Interface engineering of 2D NiFe LDH/NiFeS heterostructure for highly efficient 5-hydroxymethylfurfural electrooxidation. Chinese Chemical Letters, 2024, 35(9): 110011-. doi: 10.1016/j.cclet.2024.110011

    16. [16]

      Xiangkang JiangZhixing WangHong DongXiang ZhangJin HuManman ChuYanshuai HongLei XuWenjie PengXiqian YuJiexi Wang . An in-depth understanding of Al doping homogeneity affecting the performance of LiCoO2 at cut-off voltage over 4.6 V. Chinese Chemical Letters, 2024, 35(12): 109553-. doi: 10.1016/j.cclet.2024.109553

    17. [17]

      Han YanJingming YaoZhangran YeQiaoquan LinZiqi ZhangShulin LiDawei SongZhenyu WangChuang YuLong Zhang . Al-F co-doping towards enhanced electrolyte-electrodes interface properties for halide and sulfide solid electrolytes. Chinese Chemical Letters, 2025, 36(1): 109568-. doi: 10.1016/j.cclet.2024.109568

    18. [18]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    19. [19]

      Xiaomeng HuJie YuLijie SunLinfeng ZhangWei ZhouDongpeng YanXinrui Wang . Synthesis of an AVB@ZnTi-LDH composite with synergistically enhance UV blocking activity and high stability for potential application in sunscreen formulations. Chinese Chemical Letters, 2024, 35(11): 109466-. doi: 10.1016/j.cclet.2023.109466

    20. [20]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

Metrics
  • PDF Downloads(0)
  • Abstract views(693)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return