Citation: Xiang-chao Pang, Bo Cheng, Shu-xun Cui. The Solvent Quality of Water for Poly(N-isopropylacrylamide) in the Collapsed State: Implications from Single-molecule Studies[J]. Chinese Journal of Polymer Science, ;2016, 34(5): 578-584. doi: 10.1007/s10118-016-1773-9 shu

The Solvent Quality of Water for Poly(N-isopropylacrylamide) in the Collapsed State: Implications from Single-molecule Studies

  • Corresponding author: Shu-xun Cui, cuishuxun@swjtu.edu.cn
  • Received Date: 2 November 2015
    Revised Date: 16 November 2015
    Accepted Date: 17 November 2015

    Fund Project: This work was financially supported by the National Natural Science Foundation of China 21074102This work was financially supported by the National Natural Science Foundation of China 21222401

  • Both of temperature (in water) and composition (in the water/methanol mixed solvent) can induce the coil-to-globule transition of poly(N-isopropylacrylamide) (PNIPAM). The atomic force microscope (AFM) based single molecule force spectroscopy (SMFS) has been exploited to investigate the interactions between the polymer chain and solvent at the single-molecule level. It is found that the single-chain mechanics of PNIPAM show a remarkable dependence on the two external stimuli. A confusing experimental result is that all the force-extension (F-E) curves of unfolding an individual PNIPAM globule present a feature of elastic (monotonically increasing force) stretching but not plateau (constant force) stretching predicted by theory. In this article, we clarify that the presence of the interior solvent molecules in the single-chain globule is the origin of the discrepancy between the F-E curves obtained from theory and experiment. Although both of the external stimuli do tend to lower the solvent quality for PNIPAM, water and the water/methanol mixed solvent will never be the strongly poor solvent for PNIPAM, even at the worst condition.
  • 加载中
    1. [1]

      Lai, H. and Wu, P., Polymer, 2010, 51: 1404  doi: 10.1016/j.polymer.2010.01.036

    2. [2]

      Wang, X., Qiu, X. and Wu, C., Macromolecules, 1998, 31: 2972  doi: 10.1021/ma971873p

    3. [3]

      Deshmukh, S.A., Sankaranarayanan, S. and Mancini, D.C., J. Phys. Chem. B, 2012, 116: 5501

    4. [4]

      Okada, Y. and Tanaka, F., Macromolecules, 2005, 38: 4465  doi: 10.1021/ma0502497

    5. [5]

      Turan, E., Özçetin, G. and Caykara, T., Macromol. Biosci., 2009, 9: 421  doi: 10.1002/mabi.v9:5

    6. [6]

      Tanaka, F., Koga, T., Kojima, H. and Winnik, F.M., Chinese J. Polym. Sci., 2011, 29(1): 13  doi: 10.1007/s10118-010-1018-2

    7. [7]

      Xu, Y. and Liu, G., J. Phys. Chem. B, 2014, 118: 7450  doi: 10.1021/jp504317j

    8. [8]

      Papagiannopoulos, A., Zhao, J., Zhang, G., Pispas, S. and Radulescu, A., Eur. Polym. J., 2014, 56: 59  doi: 10.1016/j.eurpolymj.2014.04.013

    9. [9]

      Pang, X., Wang, K. and Cui, S., Polymer, 2013, 54: 3737  doi: 10.1016/j.polymer.2013.05.023

    10. [10]

      Pang, X. and Cui, S., Langmuir, 2013, 29: 12176  doi: 10.1021/la403132e

    11. [11]

      Schild, H.G., Prog. Polym. Sci., 1992, 17: 163  doi: 10.1016/0079-6700(92)90023-R

    12. [12]

      Cui, S., Pang, X., Zhang, S., Yu, Y., Ma, H. and Zhang, X., Langmuir, 2012, 28: 5151  doi: 10.1021/la300135w

    13. [13]

      Binnig, G., Quate, C.F. and Gerber, C., Phys. Rev. Lett., 1986, 56: 930  doi: 10.1103/PhysRevLett.56.930

    14. [14]

      Soni, G., Hameed, F.M., Roopa, T. and Shivashankar, G., Curr. Sci., 2002, 83: 1464

    15. [15]

      Wang, X., Chen, S., Kong, M., Wang, Z., Costa, K.D., Li, R.A. and Sun, D., Lab. Chip., 2011, 11: 3656  doi: 10.1039/c1lc20653b

    16. [16]

      Roberts, S.P., Barnard, A.W., Martin, C.M., Blees, M.K., Alden, J.S., Ruyack, A.R. and McEuen, P.L., Nano Lett., 2015, 15: 5143  doi: 10.1021/acs.nanolett.5b01367

    17. [17]

      Chen, T., Hong, Y. and Reinhard, B.M., Nano Lett., 2015, 15: 5349  doi: 10.1021/acs.nanolett.5b01725

    18. [18]

      Cluzel, P., Lebrun, A., Heller, C., Lavery, R., Viovy, J.L., Chatenay, D. and Caron, F., Science, 1996, 271: 792  doi: 10.1126/science.271.5250.792

    19. [19]

      Merkel, R., Nassoy, P., Leung, A., Ritchie, K. and Evans, E., Nature, 1999, 397: 50  doi: 10.1038/16219

    20. [20]

      Kim, W. and Yang, S., J. Colloid Interface Sci., 2000, 232: 225  doi: 10.1006/jcis.2000.7207

    21. [21]

      Song, Y., Feng, W. and Zhang, W., Chinese J. Polym. Sci., 2014, 32(9): 1149  doi: 10.1007/s10118-014-1501-2

    22. [22]

      Li, Y., Qin, M., Li, Y., Cao, Y. and Wang, W., Langmuir, 2014, 30: 4358  doi: 10.1021/la501189n

    23. [23]

      Lv, S., Dudek, D.M., Cao, Y., Balamurali, M.M., Gosline, J. and Li, H., Nature, 2010, 465: 69  doi: 10.1038/nature09024

    24. [24]

      He, C., Lamour, G., Xiao, A., Gsponer, J. and Li, H., J. Am. Chem. Soc., 2014, 136: 11946  doi: 10.1021/ja503997h

    25. [25]

      Dufrene, Y.F., Evans, E., Engel, A., Helenius, J., Gaub, H. E. and Muller, D.J., Nat. Meth., 2011, 8: 123  doi: 10.1038/nmeth0211-123

    26. [26]

      Zhang, W. and Zhang, X., Prog. Polym. Sci., 2003, 28: 1271  doi: 10.1016/S0079-6700(03)00046-7

    27. [27]

      Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J. M. and Gaub, H.E., Science, 1997, 276: 1109  doi: 10.1126/science.276.5315.1109

    28. [28]

      Cui, S., Yu, J., Kühner, F., Schulten, K. and Gaub, H.E., J. Am. Chem. Soc., 2007, 129: 14710  doi: 10.1021/ja074776c

    29. [29]

      Cui, S., Albrecht, C., Kühner, F. and Gaub, H.E., J. Am. Chem. Soc., 2006, 128: 6636  doi: 10.1021/ja0582298

    30. [30]

      Xue, Y., Li, X., Li, H. and Zhang, W., Nat. Commun., 2014, 5: 4348

    31. [31]

      Xu, H., Chen, D., Wang, S., Zhou, Y., Sun, J., Zhang, W. and Zhang, X., Philos. Trans. R. Soc., A, 2013, 371: 20120305  doi: 10.1098/rsta.2012.0305

    32. [32]

      Tan, X., Yu, Y., Liu, K., Xu, H., Liu, D., Wang, Z. and Zhang, X., Langmuir, 2012, 28: 9601  doi: 10.1021/la301703t

    33. [33]

      Liu, C., Cui, S., Wang, Z. and Zhang, X., J. Phys. Chem. B, 2005, 109: 14807  doi: 10.1021/jp050227m

    34. [34]

      Halperin, A. and Zhulina, E.B., Europhys. Lett., 1991, 15: 417  doi: 10.1209/0295-5075/15/4/009

    35. [35]

      Marenduzzo, D., Maritan, A., Rosa, A. and Seno, F., Phys. Rev. Lett., 2003, 90: 088301  doi: 10.1103/PhysRevLett.90.088301

    36. [36]

      Pickett, G. T. and Balazs, A.C., Langmuir, 2001, 17: 5111  doi: 10.1021/la001034n

    37. [37]

      Gräter, F., Heider, P., Zangi, R. and Berne, B.J., J. Am. Chem. Soc., 2008, 130: 11578  doi: 10.1021/ja802341q

    38. [38]

      Cui, S., Yu, Y. and Lin, Z., Polymer, 2009, 50: 930  doi: 10.1016/j.polymer.2008.12.012

    39. [39]

      Zhang, G. and Wu, C., Phys. Rev. Lett., 2001, 86: 822  doi: 10.1103/PhysRevLett.86.822

    40. [40]

      Tanaka, F., Koga, T. and Winnik, F.M., Phys. Rev. Lett., 2008, 101: 028302  doi: 10.1103/PhysRevLett.101.028302

    41. [41]

      Tanaka, F., Koga, T., Kojima, H., Xue, N. and Winnik, F.M., Macromolecules, 2011, 44: 2978  doi: 10.1021/ma102695n

    42. [42]

      Gunari, N., Balazs, A.C. and Walker, G.C., J. Am. Chem. Soc., 2007, 129: 10046  doi: 10.1021/ja068652w

    43. [43]

      Sun, B., Lin, Y., Wu, P. and Siesler, H.W., Macromolecules, 2008, 41: 1512  doi: 10.1021/ma702062h

    44. [44]

      Pelton, R., J. Colloid Interface Sci., 2010, 348: 673  doi: 10.1016/j.jcis.2010.05.034

    45. [45]

      Improta, S., Politou, A.S. and Pastore, A., Structure, 1996, 4: 323  doi: 10.1016/S0969-2126(96)00036-6

    46. [46]

      Cheng, B., Wu, S., Liu, S., Rodriguez-Aliaga, P., Yu, J. and Cui, S., Nanoscale, 2015, 7: 2970  doi: 10.1039/C4NR07140A

    47. [47]

      Carrion-Vazquez, M., Oberhauser, A.F., Fowler, S.B., Marszalek, P.E., Broedel, S.E., Clarke, J. and Fernandez, J.M., Proc. Natl. Acad. Sci. U.S.A., 1999, 96: 3694  doi: 10.1073/pnas.96.7.3694

    48. [48]

      Staple, D. B., Geisler, M., Hugel, T., Kreplak, L. and Kreuzer, H.J., New J. Phys., 2011, 13: 013025  doi: 10.1088/1367-2630/13/1/013025

  • 加载中
    1. [1]

      Yunan YuanZhimin LuoJie ChenChaoliang HeKai HaoHuayu Tian . Constructing thermoresponsive PNIPAM-based microcarriers for cell culture and enzyme-free cell harvesting. Chinese Chemical Letters, 2024, 35(7): 109549-. doi: 10.1016/j.cclet.2024.109549

    2. [2]

      Xiangqian CaoChenkai YangXiaodong ZhuMengxin ZhaoYilin YanZhengnan HuangJinming CaiJingming ZhuangShengzhou LiWei LiBing Shen . Synergistic enhancement of chemotherapy for bladder cancer by photothermal dual-sensitive nanosystem with gold nanoparticles and PNIPAM. Chinese Chemical Letters, 2024, 35(8): 109199-. doi: 10.1016/j.cclet.2023.109199

    3. [3]

      Jiakun Bai Junhui Jia Aisen Li . An elastic organic crystal with piezochromic luminescent behavior. Chinese Journal of Structural Chemistry, 2024, 43(6): 100323-100323. doi: 10.1016/j.cjsc.2024.100323

    4. [4]

      Jun-Ting MoZheng Wang . Achieving tunable long persistent luminescence in metal organic halides based on pyridine solvent. Chinese Chemical Letters, 2024, 35(9): 109360-. doi: 10.1016/j.cclet.2023.109360

    5. [5]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

Metrics
  • PDF Downloads(0)
  • Abstract views(630)
  • HTML views(32)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return