Citation: Ping Yu, Yan Wang, Jun-rong Yu, Jing Zhu, Zu-ming Hu. Synthesis and Characterization of Phenylethynyl-terminated Polyimide Oligomers Derived from 2,3,3',4'-Diphenyl Ether Tetracarboxylic Acid Dianhydride and 3,4'-Oxydianiline[J]. Chinese Journal of Polymer Science, ;2016, 34(1): 122-134. doi: 10.1007/s10118-016-1733-4
-
With the goal of improving processability of imide oligomers and achieving high toughness of thermosetting polyimides, a series of 4-phenylethynylphthalic anhydride (PEPA)-terminated imide oligomers prepared by the reaction of 2,3,3',4'-diphenyl ether tetracarboxylic acid dianhydride (a-ODPA) and 3,4'-oxydianiline (3,4'-ODA) with different molecular weights (degree of polymerization: n=1-9) were formed. The resultant oligomers with different molecular weights were characterized for their chemical architecture, cure behavior, thermal properties, solubility in organic solvents and rheological characteristics. Besides, the thermal properties and tensile test of cured polyimide films were also evaluated. The imide oligomer (degree of polymerization: n=1) has some somewhat crystalline phase, and imide oligomers (degree of polymerization: n=2-9) showed excellent solubility (40 wt%) in N-methyl-2-pyrrolidone (NMP) and N,N-dimethylacetamide (DMAc) at room temperature. Furthermore, the rheological properties of imide oligomers showed very low melt viscosity and wider processing window. The cured films exhibited good thermal properties with the glass transition temperatures of 282-373℃ and 5 wt% thermal decomposition temperatures higher than 551℃ in nitrogen atmosphere. The elongation at break of the prepared films was found to be high (almost 9.3%).
-
Keywords:
- Polyimide,
- Imide oligomer,
- Processability,
- Film
-
-
[1]
-
[2]
-
[3]
-
[4]
-
[5]
-
[6]
-
[7]
-
[8]
-
[9]
-
[10]
-
[11]
-
[12]
-
[13]
-
[14]
-
[15]
-
[16]
-
[17]
-
[18]
-
[19]
-
[20]
-
[21]
-
[22]
-
[23]
-
[24]
-
[25]
-
[26]
-
[27]
-
[28]
-
[29]
-
[30]
-
[31]
-
[32]
-
[33]
-
[34]
-
[35]
-
[36]
-
[37]
-
[1]
-
-
[1]
Yue Qian , Zhoujia Liu , Haixin Song , Ruize Yin , Hanni Yang , Siyang Li , Weiwei Xiong , Saisai Yuan , Junhao Zhang , Huan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785
-
[2]
Feng Zheng , Ruxun Yuan , Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027
-
[3]
Kexin Yuan , Yulei Liu , Haoran Feng , Yi Liu , Jun Cheng , Beiyang Luo , Qinglian Wu , Xinyu Zhang , Ying Wang , Xian Bao , Wanqian Guo , Jun Ma . Unlocking the potential of thin-film composite reverse osmosis membrane performance: Insights from mass transfer modeling. Chinese Chemical Letters, 2024, 35(5): 109022-. doi: 10.1016/j.cclet.2023.109022
-
[4]
Ting WANG , Peipei ZHANG , Shuqin LIU , Ruihong WANG , Jianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134
-
[5]
Haojie Song , Laiyu Luo , Siyu Wang , Guo Zhang , Baojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347
-
[6]
Wenhao Chen , Muxuan Wu , Han Chen , Lue Mo , Yirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698
-
[7]
Zihao Wang , Jing Xue , Zhicui Song , Jianxiong Xing , Aijun Zhou , Jianmin Ma , Jingze Li . Li-Zn alloy patch for defect-free polymer interface film enables excellent protection effect towards stable Li metal anode. Chinese Chemical Letters, 2024, 35(10): 109489-. doi: 10.1016/j.cclet.2024.109489
-
[8]
Zhenchun Yang , Bixiao Guo , Zhenyu Hu , Kun Wang , Jiahao Cui , Lina Li , Chun Hu , Yubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(602)
- HTML views(12)