Citation:
Xue-ping Wu a, Xian-long Zhang b, Chun-xiang Lu a, Li-cheng Ling c. THERMO-CHEMICAL REACTIONS AND STRUCTURAL EVOLUTION OF ACRYLAMIDE-MODIFIED POLYACRYLONITRILE[J]. Chinese Journal of Polymer Science,
;2010, 28(3): 367-376.
doi:
10.1007/s10118-010-9026-9
-
Thermal properties of acrylonitrile (AN)-acrylamide (AM) copolymers for carbon fibers were studied by DSC and in situ FTIR techniques in nitrogen (N2) and air flows. The cyclization mechanism and stabilization behavior of polyacrylonitrile (PAN) were discussed. In N2 flow, it was found that AM had the ability to initiate and accelerate cyclization process, which was confirmed by the fact that the initiation of nitriles shifted to a lower temperature. Compared to AN homopolymer, the initiation temperature of cyclization was ahead 32 K by introducing 3.59 mol% AM into the copolymer. The exothermic reaction was relaxed due to the presence of two separated exothermic peaks. Accompanied by DSC, in situ FTIR and calculation of activation energy, the two peaks were proved to be caused by ionic cyclization and free radical cyclization, respectively, and the corresponding cyclization mechanism was proposed. With increasing in AM content, the ionic cyclization tends to be dominant and the total heat liberated first increases and then decreases. For AN homopolymer, the activation energy of cyclization is 179 kJ/mol. For AN-AM copolymer (containing 3.59 mol% AM), the activation energy of ionic cyclization is 96 kJ/mol and that of free radical cyclization is 338 kJ/mol. In air flow, similar cyclization routes occur and the difference is the contribution of oxidation. The oxygen in environment has no remarkable effect on cyclization of AN homopolymer but retards the cyclization of AN-AM copolymers. For AN-AM copolymer with 3.59 mol% AM, the cyclization temperature is postponed 10C in air.
-
-
-
-
[1]
Yongjian Li , Xinyu Zhu , Chenxi Wei , Youyou Fang , Xinyu Wang , Yizhi Zhai , Wenlong Kang , Lai Chen , Duanyun Cao , Meng Wang , Yun Lu , Qing Huang , Yuefeng Su , Hong Yuan , Ning Li , Feng Wu . Unraveling the chemical and structural evolution of novel Li-rich layered/rocksalt intergrown cathode for Li-ion batteries. Chinese Chemical Letters, 2024, 35(12): 109536-. doi: 10.1016/j.cclet.2024.109536
-
[2]
Qiaojia GUO , Junkai CAI , Chunying DUAN . Effects of anions on the structural regulation of Zn-salen-modified metal-organic cage. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2203-2211. doi: 10.11862/CJIC.20240209
-
[3]
Yusheng Lu , Chaofeng Huang , Zhigang Lei , Mingyuan Zhu . Catalytic effects of structural design in N-modified carbon materials for the hydrochlorination of acetylene. Chinese Chemical Letters, 2025, 36(8): 110583-. doi: 10.1016/j.cclet.2024.110583
-
[4]
Yanan Zhou , Li Sheng , Lanlan Chen , Wenhua Zhang , Jinlong Yang . Axial coordinated iron-nitrogen-carbon as efficient electrocatalysts for hydrogen evolution and oxygen redox reactions. Chinese Chemical Letters, 2025, 36(1): 109588-. doi: 10.1016/j.cclet.2024.109588
-
[5]
Yukang Xiong , Lin Lv , Guokun Ma , Hanbin Wang , Houzhao Wan , Hao Wang . Construction and structural evolution of heterostructured cobalt-iron alloys@phosphates as oxygen evolution electrocatalyst toward rechargeable Zn-air battery. Chinese Journal of Structural Chemistry, 2025, 44(11): 100699-100699. doi: 10.1016/j.cjsc.2025.100699
-
[6]
Li Li , Fanpeng Chen , Bohang Zhao , Yifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240
-
[7]
Mengjun Zhao , Yuhao Guo , Na Li , Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348
-
[8]
Lian Sun , Honglei Wang , Ming Ma , Tingting Cao , Leilei Zhang , Xingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188
-
[9]
Yan-Jiang Li , Shu-Lei Chou , Yao Xiao . Detecting dynamic structural evolution based on in-situ high-energy X-ray diffraction technology for sodium layered oxide cathodes. Chinese Chemical Letters, 2025, 36(2): 110389-. doi: 10.1016/j.cclet.2024.110389
-
[10]
Zhongjie Song , Nannan Zhang , Jun Yu , Huiyu Sun , Zhengying Wu , Yukou Du . Growth of Ce-doped NiCo-LDHs on tin dioxide-modified nickel foam as oxygen evolution reaction catalyst electrode. Chinese Chemical Letters, 2026, 37(1): 111804-. doi: 10.1016/j.cclet.2025.111804
-
[11]
Haixia Wu , Kailu Guo . Iodized polyacrylonitrile as fast-charging anode for lithium-ion battery. Chinese Chemical Letters, 2024, 35(10): 109550-. doi: 10.1016/j.cclet.2024.109550
-
[12]
Yijia Jiao , Yuzhu Li , Yuting Zhou , Peipei Cen , Yi Ding , Yan Guo , Xiangyu Liu . Structural evolution and zero-field SMM behaviour in ferromagnetically-coupled disk-type Co7 clusters bearing exclusively end-on azido bridges. Chinese Chemical Letters, 2024, 35(8): 109082-. doi: 10.1016/j.cclet.2023.109082
-
[13]
Kaihui Huang , Boning Feng , Xinghua Wen , Lei Hao , Difa Xu , Guijie Liang , Rongchen Shen , Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204
-
[14]
Yong-Dan Zhao , Yidan Wang , Rongrong Wang , Lina Chen , Hengtong Zuo , Xi Wang , Jihong Qiang , Geng Wang , Qingxia Li , Canqi Ping , Shuqiu Zhang , Hao Wang . Reversing artemisinin resistance by leveraging thermo-responsive nanoplatform to downregulating GSH. Chinese Chemical Letters, 2024, 35(6): 108929-. doi: 10.1016/j.cclet.2023.108929
-
[15]
Mei Peng , Wei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899
-
[16]
Shehla Khalid , Muhammad Bilal , Nasir Rasool , Muhammad Imran . Photochemical reactions as synthetic tool for pharmaceutical industries. Chinese Chemical Letters, 2024, 35(9): 109498-. doi: 10.1016/j.cclet.2024.109498
-
[17]
Pan Zhou , Ting Zou , Hong-Jian Song , Yu-Xiu Liu , Qing-Min Wang . Advances in organoelectrochemical copper-catalyzed reactions. Chinese Chemical Letters, 2026, 37(1): 111673-. doi: 10.1016/j.cclet.2025.111673
-
[18]
Chun-Yun Ding , Ru-Yuan Zhang , Yu-Wu Zhong , Jiannian Yao . Binary and heterostructured microplates of iridium and ruthenium complexes: Preparation, characterization, and thermo-responsive emission. Chinese Journal of Structural Chemistry, 2024, 43(10): 100393-100393. doi: 10.1016/j.cjsc.2024.100393
-
[19]
Qiang Luo , Jinfeng Sun , Zhibo Li , Bin Liu , Jianxun Ding . Thermo-sensitive poly(amino acid) hydrogel mediates cytoprotection through an antioxidant mechanism. Chinese Chemical Letters, 2025, 36(7): 110433-. doi: 10.1016/j.cclet.2024.110433
-
[20]
Yu Yan , Jiawei Song , Dongdong Liu , Zihan Liu , Jialing Cheng , Zhiyang Chen , Yanfang Yang , Weizhe Jiang , Hongliang Wang , Jun Ye , Yuling Liu . Simple and versatile in situ thermo-sensitive hydrogel for rectal administration of SZ-A to alleviate inflammation and repair mucosal barrier in ulcerative colitis. Chinese Chemical Letters, 2024, 35(6): 109736-. doi: 10.1016/j.cclet.2024.109736
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(1184)
- HTML views(14)
Login In
DownLoad: