Citation: Kang-Jing Zhang, Zhao-Bin Qiu. Miscibility and Crystallization Behavior of Novel Branched Poly(ethylene succinate)/Poly(vinyl phenol) Blends[J]. Chinese Journal of Polymer Science, ;2019, 37(11): 1169-1175. doi: 10.1007/S10118-019-2269-1 shu

Miscibility and Crystallization Behavior of Novel Branched Poly(ethylene succinate)/Poly(vinyl phenol) Blends

  • Corresponding author: Zhao-Bin Qiu, qiuzb@mail.buct.edu.cn
  • Received Date: 11 March 2019
    Revised Date: 2 April 2019
    Available Online: 24 May 2019

  • The blends of novel branched poly(ethylene succinate) (b-PES) and poly(vinyl phenol) (PVPh) were prepared via a solution and casting method. The miscibility, melting behavior, spherulitic morphology and growth, and crystal structure of b-PES/PVPh blends were investigated in detail. PVPh was miscible with b-PES over the whole compositions as evidenced by the single composition dependent glass transition temperature. Double melting behavior occurred in neat b-PES and b-PES/PVPh 85/15 blend after isothermal melt crystallization, which may be explained by the melting, recrystallization, and remelting mechanism. In addition, the depression of equilibrium melting point of an 85/15 blend was also found, confirming again the miscibility between the two components. The addition of PVPh caused the decrease of nucleation density and crystal growth rates of b-PES spherulites in the blend. The crystal structure of b-PES was unchanged before and after blending; moreover, the crystallinity of b-PES decreased slightly in the blend.
  • 加载中
    1. [1]

      Zeng, J.; Wu, F.; Huang, C.; He, Y.; Wang, Y. Urethane ionic groups induced rapid crystallization of biodegradable poly(ethylene succinate). ACS Macro Lett. 2012, 1, 965−968.  doi: 10.1021/mz300243t

    2. [2]

      Tezuka, Y.; Ishii, N.; Kasuya, K.; Mitomo, H. Degradation of poly(ethylene succinate) by mesophilic bacteria. Polym. Degrad. Stab. 2004, 84, 115–121.  doi: 10.1016/j.polymdegradstab.2003.09.018

    3. [3]

      Gan, Z.; Abe, H.; Doi, Y. Biodegradable poly(ethylene succinate) (PES). 2. Crystal morphology of melt-crystallized ultrathin film and its change after enzymatic degradation. Biomacromolecules 2000, 1, 713–720.  doi: 10.1021/bm000055t

    4. [4]

      Qiu, Z.; Fujinnami, S.; Komura, M.; Nakajima, K.; Ikehara, T.; Nishi, T. Nonisothermal crystallization kinetics of poly(butylene succinate) and poly(ethylene succinate). Polym. J. 2004, 36. 642–646.  doi: 10.1295/polymj.36.642

    5. [5]

      Gan, Z.; Abe, H.; Doi, Y. Biodegradable poly(ethylene succinate) (PES). 1. Crystal growth kinetics and morphology. Biomacromolecules 2000, 1, 704–712.  doi: 10.1021/bm0000541

    6. [6]

      Qiu, Z.; Komura, M.; Ikehara, T.; Nishi, T. DSC and TMDSC study of melting behavior of poly(butylene succinate) and poly(ethylene succinate). Polymer 2003, 44, 7781–7785.  doi: 10.1016/j.polymer.2003.10.045

    7. [7]

      Kataoka, T.; Abe, T.; Ikehara, T. Crystalline layered morphology in the phase-separated blend of poly(butylene succinate) and poly(ethylene succinate). Polym. J. 2015, 47, 645–648.  doi: 10.1038/pj.2015.46

    8. [8]

      Liu, X.; Zhu, J.; Ni, H.; Chen, S. Influence of blend composition on crystallization of poly(L-Lactic Acid)/poly(ethylene oxide) crystalline/crystalline blends. J. Macromol. Sci. 2015, 54, 203–241.  doi: 10.1080/00222348.2014.996478

    9. [9]

      Zeng, J.; Zhu, Q.; Li, Y.; Qiu, Z.; Wang, Y. Unique crystalline/crystalline polymer blends of poly(ethylene succinate) and poly(p-dioxanone): miscibility and crystallization behaviors. J. Phys. Chem. B 2010, 114, 14827–14833.  doi: 10.1021/jp104709z

    10. [10]

      He, Y.; Zeng, J.; Li, S.; Wang, Y. Crystallization behavior of partially miscible biodegradable poly(butylene succinate)/poly(ethylene succinate) blends. Thermochim. Acta 2012, 529, 80–86.  doi: 10.1016/j.tca.2011.11.031

    11. [11]

      Kataoka, T.; Hiramoto, K.; Kurihara, H.; Ikehara, T. Effects of melt annealing on the miscibility and crystallization of poly(butylene succinate)/poly(ethylene succinate) blends. Polym. J. 2014, 46, 405–411.  doi: 10.1038/pj.2014.11

    12. [12]

      Lu, J.; Qiu, Z.; Yang, W. Fully biodegradable blends of poly(L-lactide) and poly(ethylene succinate): miscibility, crystallization, and mechanical properties. Polymer 2007, 48, 4196–4204.  doi: 10.1016/j.polymer.2007.05.035

    13. [13]

      Papageorgiou, G.; Bikiaris, D. Synthesis and properties of novel biodegradable/biocompatible poly[propylene-co-(ethylene succinate)] random copolyesters. Macromol. Chem. Phys. 2009, 210, 1408–1421.  doi: 10.1002/macp.v210:17

    14. [14]

      Chen, M.; Chang, W.; Lu, H.; Chen, C.; Peng, J.; Tsai, C. Characterization, crystallization kinetics and melting behavior of poly(ethylene succinate) copolyester containing 5 mol% trimethylene succinate. Polymer 2007, 48, 5408–5416.  doi: 10.1016/j.polymer.2007.06.060

    15. [15]

      Chen, C.; Lu, H.; Chen, M.; Peng, J.; Tsai, C.; Yang, C. Synthesis and characterization of poly(ethylene succinate) and its copolyesters containing minor amounts of butylene succinate. J. Appl. Polym. Sci. 2009, 111, 1433–1439.

    16. [16]

      Yang, Y.; Qiu, Z. Crystallization and melting behavior of biodegradable poly(ethylene succinate-co-6 mol% butylene succinate). J. Appl. Polym. Sci. 2011, 122, 105–111.  doi: 10.1002/app.v122.1

    17. [17]

      Li, X.; Qiu, Z. Crystallization kinetics, morphology, and mechanical properties of novel poly(ethylene succinate-co-octamethylene succinate). Polym. Test. 2015, 48, 125–132.  doi: 10.1016/j.polymertesting.2015.10.002

    18. [18]

      Li, X.; Qiu, Z. Synthesis and properties of novel poly(ethylene succinate-co-decamethylene succinate) copolymers. RSC Adv. 2015, 5, 103713–103721.  doi: 10.1039/C5RA23585E

    19. [19]

      Wu, H.; Qiu, Z. Synthesis, crystallization kinetics and morphology of novel poly(ethylene succinate-co-ethylene adipate) copolymers. CrystEngComm 2012, 14, 3586–3595.  doi: 10.1039/c2ce06629g

    20. [20]

      Qiu, S.; Su, Z.; Qiu, Z. Crystallization kinetics, morphology and mechanical properties of novel biodegradable poly(ethylene succinate-co-ethylene suberate) copolyesters. Ind. Eng. Chem. Res. 2016, 55, 10286–10293.  doi: 10.1021/acs.iecr.6b02654

    21. [21]

      Jin, H.; Kim, D.; Kim, M.; Lee, I.; Lee, H.; Yoon, J. Synthesis and properties of poly(butylene succinate) with n-hexenyl side branches. J. Appl. Polym. Sci. 2001, 81, 2219–2226.  doi: 10.1002/(ISSN)1097-4628

    22. [22]

      Yan, D.; Wang, W.; Zhu, S. Effect of long chain branching on rheological properties of metallocene polyethylene. Polymer 1999, 40, 1737–1744.  doi: 10.1016/S0032-3861(98)00318-8

    23. [23]

      Gao, R.; He, X.; Shao, Y.; Hu, Y.; Zhang, H.; Liu, Z.; Liu, B. Effects of branch content and branch length on polyethylene crystallization: molecular dynamics simulation. Macromol. Theor. Simul. 2016, 25, 303–311.  doi: 10.1002/mats.201500089

    24. [24]

      Zheng, Y.; Tee, H.; Wei, Y.; Wu, X.; Mezger, M.; Yan, S.; Landfester, K.; Wagener, K.; Wurm, F.; Lieberwirth, I. Morphology and thermal properties of precision polymers: the crystallization of butyl branched polyethylene and polyphosphoesters. Macromolecules 2016, 49, 1321−1330.  doi: 10.1021/acs.macromol.5b02581

    25. [25]

      Marie, V.; Nicolas, J.; Rene, S.; Nadege, B.; Christian, C.; Alain, R.; Francoise, F. Synthesis of branched poly(butylene succinate): structure properties relationship. Chinese J. Polym. Sci. 2016, 34, 873–888.  doi: 10.1007/s10118-016-1805-5

    26. [26]

      Qiu, S.; Zhang, K.; Su, Z.; Qiu, Z. Thermal behavior, mechanical and rheological properties, and hydrolytic degradation of novel branched biodegradable poly(ethylene succinate) copolymers. Polym. Test. 2018, 66, 64−69.  doi: 10.1016/j.polymertesting.2018.01.008

    27. [27]

      Kuo, S.; Huang, C.; Chang, F. Study of hydrogen-bonding strength in poly(ε-caprolactone) blends by DSC and FTIR. J. Polym. Sci., Part B: Polym. Phys. 2001, 39, 1348–1359.  doi: 10.1002/(ISSN)1099-0488

    28. [28]

      Zhang, L.; Goh, S.; Lee, S. Miscibility and crystallization behaviour of poly(L-lactide)/poly(p-vinyl phenol) blends. Polymer 1998, 39, 4841–4847.  doi: 10.1016/S0032-3861(97)10167-7

    29. [29]

      Qiu, Z.; Komura, M.; Ikehara, T.; Nishi, T. Poly(butylene succinate)/poly(vinyl phenol) blends. Part 1. Miscibility and crystallization. Polymer 2003, 44, 8111–8117.  doi: 10.1016/j.polymer.2003.10.030

    30. [30]

      Qiu, Z.; Fujinami, S.; Komura, M.; Nakajima, K.; Ikehara, T.; Nishi, T. Miscibility and crystallization of poly(ethylene succinate)/poly(vinyl phenol) blends. Polymer 2004, 45, 4515–4521.  doi: 10.1016/j.polymer.2004.04.033

    31. [31]

      Yang, F.; Qiu, Z.; Yang, W. Miscibility and crystallization of biodegradable poly(butylene succinate-co-butylene adipate)/poly(vinyl phenol) blends. Polymer 2009, 50, 2328–2333.  doi: 10.1016/j.polymer.2009.03.029

    32. [32]

      Cai, H.; Yu, J.; Qiu, Z. Miscibility and crystallization of biodegradable poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)/poly(vinyl phenol) blends. Polym. Eng. Sci. 2012, 52, 233–241.  doi: 10.1002/pen.v52.2

    33. [33]

      Weng, M.; Qiu, Z. Crystallization kinetics and morphology of novel miscible crystalline/amorphous polymer blends of biodegradable poly(butylene succinate-co-butylene carbonate) and poly(vinyl phenol). Ind. Eng. Chem. Res. 2013, 52, 10198–10205.  doi: 10.1021/ie401745e

    34. [34]

      Shi, X.; Qiu, Z. Miscibility, crystallization behavior and morphology of novel poly(butylene suberate) and poly(vinyl phenol) blends. RSC Adv. 2015, 5, 79691–79698.  doi: 10.1039/C5RA16801E

    35. [35]

      Hou, Y.; Wu, Q.; Chen, T.; Sun, P. Unique evolution of spatial and dynamic heterogeneities on the glass transition behavior of PVPh/PEO blends. Chinese J. Polym. Sci. 2012, 30, 900–915.  doi: 10.1007/s10118-012-1182-7

    36. [36]

      Fox, T. Influence of diluent and copolymer composition on the glass transition temperature of a polymer system. Bull. Am. Phys. Soc. 1956, 1, 123.

    37. [37]

      Penning, J.; Manley, R. Miscible blends of two crystalline polymers. 1. phase behavior and miscibility in blends of poly(vinylidene fluoride) and poly(1,4-butylene adipate). Macromolecules 1996, 29, 77−83.  doi: 10.1021/ma950651t

    38. [38]

      Flory, P. Principles of polymer chemistry. Cornell University Press, Ithaca, NY, 1953.

    39. [39]

      Nishi, T.; Wang, T. Melting point depression and kinetic effects of cooling on crystallization in poly(vinylidene fluoride)-poly(methyl methacrylate) mixtures. Macromolecules 1975, 8, 909−915.  doi: 10.1021/ma60048a040

    40. [40]

      Liu, T.; Petermann, J. Multiple melting behavior in isothermally cold-crystallized isotactic polystyrene. Polymer 2001, 42, 6453−6461.  doi: 10.1016/S0032-3861(01)00173-2

    41. [41]

      Qiu, Z.; Ikehara, T.; Nishi, T. Melting behaviour of poly(butylene succinate) in miscible blends with poly(ethylene oxide). Polymer 2003, 44, 3095−3099.  doi: 10.1016/S0032-3861(03)00216-7

    42. [42]

      Wu, H.; Qiu, Z. A comparative study of crystallization, melting behavior, and morphology of biodegradable poly(ethylene adipate) and poly(ethylene adipate-co-5 mol% ethylene succinate). Ind. Eng. Chem. Res. 2012, 51, 13323–13328.  doi: 10.1021/ie301968f

    43. [43]

      Hoffman, J.; Weeks, J. X-Ray study of isothermal thickening of lamellae in bulk polyethylene at the crystallization temperature. J. Chem. Phys. 1965, 42, 4301−4302.  doi: 10.1063/1.1695935

  • 加载中
    1. [1]

      Jun LuJinrui YanYaohao GuoJunjie QiuShuangliang ZhaoBo Bao . Controlling solid form and crystal habit of triphenylmethanol by antisolvent crystallization in a microfluidic device. Chinese Chemical Letters, 2024, 35(4): 108876-. doi: 10.1016/j.cclet.2023.108876

    2. [2]

      Jiakun Bai Junhui Jia Aisen Li . An elastic organic crystal with piezochromic luminescent behavior. Chinese Journal of Structural Chemistry, 2024, 43(6): 100323-100323. doi: 10.1016/j.cjsc.2024.100323

    3. [3]

      Hongdao LIShengjian ZHANGHongmei DONG . Magnetic relaxation and luminescent behavior in nitronyl nitroxide-based annuluses of rare-earth ions. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 972-978. doi: 10.11862/CJIC.20230411

    4. [4]

      Yan ZouYin-Shuang HuDeng-Hui TianHong WuXiaoshu LvGuangming JiangYu-Xi Huang . Tuning the membrane rejection behavior by surface wettability engineering for an effective water-in-oil emulsion separation. Chinese Chemical Letters, 2024, 35(6): 109090-. doi: 10.1016/j.cclet.2023.109090

    5. [5]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    6. [6]

      Mengjun SunZhi WangJvhui JiangXiaobing WangChuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393

    7. [7]

      Huimin Gao Zhuochen Yu Xuze Zhang Xiangkun Yu Jiyuan Xing Youliang Zhu Hu-Jun Qian Zhong-Yuan Lu . A mini review of the recent progress in coarse-grained simulation of polymer systems. Chinese Journal of Structural Chemistry, 2024, 43(5): 100266-100266. doi: 10.1016/j.cjsc.2024.100266

    8. [8]

      Dong LvXuelei LiuWei LiQiang ZhangXinhong YuYanchun Han . Single droplet formation by controlling the viscoelasticity of polymer solutions during inkjet printing. Chinese Chemical Letters, 2024, 35(6): 109401-. doi: 10.1016/j.cclet.2023.109401

    9. [9]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    10. [10]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    11. [11]

      Yuanzhe Lu Yuanqin Zhu Linfeng Zhong Dingshan Yu . Long-lifespan aqueous alkaline and acidic batteries enabled by redox conjugated covalent organic polymer anodes. Chinese Journal of Structural Chemistry, 2024, 43(3): 100249-100249. doi: 10.1016/j.cjsc.2024.100249

    12. [12]

      Qianqian SongYunting ZhangJianli LiangSi LiuJian ZhuXingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797

    13. [13]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    14. [14]

      Xin LiXuan DingJunkun ZhouHui ShiZhenxi DaiJiayi LiuYongcun MaPenghui ShaoLiming YangXubiao Luo . Utilizing synergistic effects of bifunctional polymer hydrogel PAM-PAMPS for selective capture of Pb(Ⅱ) from wastewater. Chinese Chemical Letters, 2024, 35(7): 109158-. doi: 10.1016/j.cclet.2023.109158

    15. [15]

      Lei ZhouYoujun ZhouLizhen FangYiqiao BaiYujia MengLiang LiJie YangYong Yao . Pillar[5]arene based artificial light-harvesting supramolecular polymer for efficient and recyclable photocatalytic applications. Chinese Chemical Letters, 2024, 35(9): 109509-. doi: 10.1016/j.cclet.2024.109509

    16. [16]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    17. [17]

      Panke ZhouHong YuMun Yin CheeTao ZengTianli JinHongling YuShuo WuWen Siang LewXiong Chen . Electron push-pull effects induced performance promotion in covalent organic polymer thin films-based memristor for neuromorphic application. Chinese Chemical Letters, 2024, 35(5): 109279-. doi: 10.1016/j.cclet.2023.109279

    18. [18]

      Jun GuoZhenbang ZhuangWanqiang LiuGang Huang . "Co-coordination force" assisted rigid-flexible coupling crystalline polymer for high-performance aqueous zinc-organic batteries. Chinese Chemical Letters, 2024, 35(9): 109803-. doi: 10.1016/j.cclet.2024.109803

    19. [19]

      Zihao WangJing XueZhicui SongJianxiong XingAijun ZhouJianmin MaJingze Li . Li-Zn alloy patch for defect-free polymer interface film enables excellent protection effect towards stable Li metal anode. Chinese Chemical Letters, 2024, 35(10): 109489-. doi: 10.1016/j.cclet.2024.109489

    20. [20]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

Metrics
  • PDF Downloads(0)
  • Abstract views(635)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return