Tb3+-Eu3+掺杂含Na8.12Y1.293Si6O18晶相玻璃陶瓷的发光与热稳定性
王彤, 朱雪芳, 高琦, 张洪波, 任超, 葛丽霞
【无机化学学报】doi: 10.11862/CJIC.20250137
制备了一系列Tb3+-Eu3+掺杂含Na8.12Y1.293Si6O18晶相的玻璃陶瓷,通过多种表征技术系统研究了热处理条件对其微观结构和发光性能的影响,最终确定最佳热处理条件为670 ℃、90 min。Tb3+的最佳掺杂浓度(物质的量分数)为0.5%,超过此浓度时会出现四极-四极相互作用主导的浓度猝灭。双掺玻璃陶瓷中存在Tb3+向Eu3+的能量传递。在293~493 K温度范围内,双掺玻璃陶瓷表现出良好的热稳定性,热猝灭活化能为0.24 eV,色度偏移为2.1×10-2。此外,该材料具有一定的温度传感性能,最大温度灵敏度为5.7×10-3 K-1,热重复性比为96.6%。
关键词: 硅酸盐, 玻璃陶瓷, Tb3+-Eu3+掺杂, 热稳定性, 发光
S型异质结Al6Si2O13/BiOBr通过增强电荷转移效应实现高效稳定光催化降解三唑磷和敌敌畏农药
孟奥运, 李振华, 熊国远, 李真, 张金锋
【物理化学学报】doi: 10.1016/j.actphy.2025.100186
随着人们对农药污染的日益关注,尤其是在食品、谷物和肉类产品领域,寻找高效且稳定的光催化剂用于污染物降解成为一个重要研究方向。本研究成功合成了一种新型S型异质结光催化剂Al6Si2O13/BiOBr(ASO/BO)纳米复合材料,旨在增强电荷转移并提高对常见农业污染物三唑磷(TAP)和敌敌畏(DDVP)的光催化降解效率。性能评估表明,60-ASO/BO纳米复合材料(ASO负载比为60%)表现出卓越的降解效率,在100 min内将农药(TAP)浓度从100%降至28.0%,且在四次循环(400 min)后仍保持94.7%的初始活性。相比之下,单相ASO和BO的降解效率显著降低,分别仅为56.6%和58.8%。对于DDVP,该复合材料也展现出优异的光催化降解活性,在100 min内将其浓度从100%降至32.3%,远优于ASO(100%至67.8%)和BO(100%至47.9%)。这一卓越性能归因于S-scheme异质结结构所带来的增强电荷转移效应。通过飞秒瞬态吸收光谱(fs-TAS)、吸附能理论计算、差分电荷密度分析、开尔文探针力显微镜(KPFM)和原位X射线光电子能谱(XPS)进一步验证了电荷转移路径和机制。研究结果显示,S型电荷转移效应对于提升光催化性能至关重要。总体而言,ASO/BO的S型异质结为持久高效的光催化降解环境污染物提供了可靠途径,在农业、食品安全以及谷物和肉类产品保鲜领域具有广阔的应用前景。
关键词: 光催化剂, S型异质结, 纳米复合材料, 污染物, 电荷转移

出版年份

相关作者

相关热词