【物理化学学报】doi: 10.3866/PKU.WHXB202312010
采用有机法和水热法合成了Cu-石墨炔和CoNiWO4并构建Cu-石墨炔/CoNiWO4 S型异质结。在保留催化剂强氧化还原能力的同时,通过内建电场和能带弯曲的协同作用促进了光生载流子的高效分离和转移。Cu-石墨炔的引入有效提高了复合催化剂的光吸收能力和导电性,抑制了光生载流子的复合。同时,Cu-石墨炔独特的二维平面网络结构提供了丰富的活性位点,从而促进了光催化反应的进行。密度泛函理论(DFT)计算表明,Cu的表面等离子体共振效应产生的热电子转移到石墨炔上,促进氢气的析出。本研究为Cu-石墨炔和镍钴基催化剂在光催化制氢领域提供了新的参考。
【物理化学学报】doi: 10.3866/PKU.WHXB202407021
S型异质结可以实现光生载流子有效空间分离,保持较强的氧化还原能力。因此,深入了解S型异质结构的光致电荷转移动力学对提高其光催化性能至关重要。本文采用原位水热法制备了紧密接触的SnO2/BiOBr S型异质结。优化后的SnO2/BiOBr具有优异的光催化CO2还原性能,CO和CH4的产率分别为345.7和6.7 μmol·g-1·h-1,分别是纯BiOBr的5.6和3.7倍。利用原位XPS和飞秒瞬态吸收光谱(fs-TA)表征了SnO2/BiOBr S型异质结的光致电荷转移机制和动力学。发现光生载流子出现了新的拟合寿命,这可归因于S型异质结的界面电子转移,进一步证明了光电子从SnO2导带到BiOBr价带的超快转移通道。因此,BiOBr导带中的还原电子和SnO2价带中的氧化空穴得以保留。本研究对S型异质结的光致电荷传输机理提供了更深刻的理解。
【物理化学学报】doi: 10.3866/PKU.WHXB202309031
人工半导体光催化CO2转化被广泛认为是模拟自然碳循环的最有前途的策略之一。其中,Bi2MoO6具有光催化CO2转化的潜力。然而,由于其光生电荷载体的快速复合,其催化性能仍然不足。因此,改善Bi2MoO6的催化效率是一个紧迫的问题。在这项研究中,我们通过水热法合成了Bi2MoO6纳米片,并在其表面同时生长了CeO2纳米颗粒,形成了Ce3+/Ce4+离子桥接修饰的S型异质结。时间分辨光致发光光谱和光电化学测试揭示了这种异质结的增强电荷分离效应。此外,原位X射线光电子能谱分析和理论计算进一步证实,光生电子转移路径遵循S型机制,从氧化型半导体Bi2MoO6的导带转移到还原型半导体CeO2的价带。实验结果表明,CeO2/Bi2MoO6、Bi2MoO6和CeO2的光催化CO2还原为CO的效率分别为65.3、14.8和1.2 μmol·g-1·h-1。与纯Bi2MoO6相比,CeO2/Bi2MoO6复合催化剂将CO2光催化还原为CO的催化效率提高了3.12倍。这项工作为设计和构建新型S型异质结光催化剂提供了独特的见解。
【无机化学学报】doi: 10.11862/CJIC.20240170
采用简单的室温搅拌法和一步硫化法制备了MnO2纳米线支撑中空十二面体CoNi2S4 (MnO2/CoNi2S4)电极材料。超长MnO2纳米线为电子转移提供了直接路径,而且其较大的长径比有利于形成自支撑的三维导电网络结构;中空多孔的CoNi2S4提供了更丰富的活性位点,同时缓解了充放电过程中的体积变化。得益于以上优势,MnO2/CoNi2S4在1 A·g-1时具有1 531.1 F·g-1的比电容,在10 A·g-1时具有86.9%的电容保持率。利用MnO2/CoNi2S4作为正极、活性炭(AC)为负极组装的MnO2/CoNi2S4||AC器件实现了高能量密度(800 W·kg-1时40 Wh·kg-1)和优异的循环稳定性(5 000次循环后保持64.8%)。
【物理化学学报】doi: 10.3866/PKU.WHXB202403005
近年来随着工业化的深入发展,全球环境污染日益加重,尤其是水体中的抗生素污染, 亟需重点关注并采取科学、有效方法予以解决。光催化技术是一种非常有前景的水体治理技术,为解决水体抗生素污染提供了重要途径。该技术实现大规模应用的关键在于开发出高效且稳定的光催化材料。现有的光催化材料的性能主要受制于其弱的太阳能利用率,快速复合的光生载流子以及氧化还原能力弱等问题。研究发现科学设计和构筑碳量子调控S型异质结材料可以有效克服以上问题。相比于单一的S型异质结,该新型异质结体系整合了两者的优势,具有巨大的应用前景。因此, 开发新型碳量子调控S型异质结材料, 有望实现对抗生素污染水体的快速治理, 进一步促进光催化水体修复技术的发展。在本文研究中,我们成功开发了一种新型的碳量子点调控的S型carbon quantum dots/CdS/Ta3N5异质结纤维用于高效去除左氧氟沙星。其对左氧氟沙星去除速率常数为0.0404 min-1,比Ta3N5,CdS/Ta3N5和CdS分别提高了39.4、2.1和7.2倍。这主要得益于独特1D/0D/0D核壳结构,该异质结构有效促进了碳量子点和S型异质结的协同增效机制。本研究为开发高效Ta3N5基催化体系用于环境治理开辟了一种新的思路。
【物理化学学报】doi: 10.3866/PKU.WHXB202408002
通过半导体光催化将CO2转化为可储存的太阳能燃料是解决温室效应和资源短缺问题的有效策略。然而,光生载流子的快速复合严重限制了单组分催化剂的CO2还原能力。合成具有缺陷的S型异质结可以有效地分离光生电子和空穴,增强对非极性分子的吸附和活化。本文采用原位合成的方法构建了具有缺陷的S型ZnWO4/g-C3N4异质结。结果表明,CO2还原产生CO的速率高达232.4 μmol∙g-1∙h-1,选择性接近100%,分别是原始ZnWO4和g-C3N4的11.6倍和8.5倍。原位XPS和功函数分析证明了S型电荷转移路径。S型异质结实现了电子-空穴的有效空间分离,促进了CO2的还原。原位ESR表明CO2分子被氮空位吸附,氮空位是光催化反应中的电子受体,有利于电子捕获和分离。S型电荷转移模式和氮空位共同促进了CO2高效还原。这项工作为了解S型电荷转移机理和缺陷在调节CO2还原活性方面的协同作用提供了重要见解。
【物理化学学报】doi: 10.3866/PKU.WHXB202407020
开发用于制氢的高效光催化剂在可持续能源研究中至关重要。本研究设计并制备了一种具有S型异质结结构的共价三嗪框架(CTF)-Cu2O@NC复合材料,旨在提高光催化制氢的效率。由于氮掺杂碳(NC)层和S型异质结的协同效应,复合物的光吸收能力、电子-空穴分离效率和产氢活性显著增强。该系统的结构和光电化学表征表明,S型异质结不仅提高了光生载流子的分离效率,而且还保持了很强的氧化还原能力,从而进一步促进了光催化反应。此外,NC层可以同时减少Cu2O的光腐蚀并促进电子转移。实验结果表明,CTF-7% Cu2O@NC复合材料在可见光照射下表现出优异的制氢性能,达到15645 μmol∙g-1∙h-1,大大超过了纯CTF的光催化活性(2673 μmol∙g-1∙h-1)。这项研究为开发高效、创新的光催化材料提供了一种新方法,有力地支持了可持续氢能源的发展。
【物理化学学报】doi: 10.3866/PKU.WHXB202310013
抗生素在自然水体中的含量不断升高,引发的水体污染对社会的可持续发展构成了巨大威胁。光催化技术是一种高效且环保的环境净化技术,在解决环境污染方面具有巨大的应用前景。C3N5是一种性能优越的非贵金属光催化剂。然而,该催化剂的应用面临着一些挑战,比如光反应动力学较慢和光生载流子快速复合的问题。近期的研究表明,构筑独特的S型异质结是获得优良光催化剂的一种有效策略。因此,通过一种简易的制备方法成功构筑了一种等离子体效应协同的Ag/Ag3PO4/C3N5 S型异质结光催化材料。由于等离子体效应和S型异质结的协同作用,Ag/Ag3PO4/C3N5异质结展现出优异的吸收太阳光的能力、高效分离光生载流子的能力以及强大的光氧化还原能力,能够在太阳光的激发下有效产生大量的·OH和·O2-自由基。因此,Ag/Ag3PO4/C3N5表现出卓越的光催化性能,对左氧氟沙星(LEV)的降解速率常数高达0.0362 min-1,比C3N5、Ag3PO4和Ag3PO4/C3N5分别提高了24.8、1.1和0.7倍。此外,Ag/Ag3PO4/C3N5异质结具有出色的抗外界环境干扰性和可重复使用性。该研究为C3N5基光催化剂材料在环境净化方面迈出了坚实的一步。
【物理化学学报】doi: 10.3866/PKU.WHXB202311016
定向电荷转移是调控光生载流子分离动力学的一种极具吸引力的策略。本文通过在SnNb2O6纳米片上原位生长C3N5纳米棒,设计一种具有强内建电场(IEF)和偶极场(DF)的新型2D/1D SnNb2O6/富氮C3N5 S型异质结。通过构筑S型异质结,在界面处产生IEF,促进电荷从SnNb2O6向C3N5的定向迁移。与此同时,C3N5中的DF提供一种驱动力,将光生电子定向转移至活性位点。通过IEF和DF的协同效应,SnNb2O6/C3N5异质结实现了快速的定向电子转移,从而显著提高了电荷分离效率。研究结果表明,SnNb2O6/C3N5异质结的最佳产氢速率高达1090.0 μmol·g-1·h-1 (反应过程中持续释放H2气泡),分别是SnNb2O6和C3N5的38.8和10.7倍。此外,SnNb2O6/C3N5异质结在去除罗丹明B、四环素和Cr(Ⅵ)方面也表现出优异的光催化性能。通过电子顺磁共振(EPR)、时间分辨光致发光光谱(TPRL)和密度泛函理论(DFT)计算,本文系统探讨了SnNb2O6/C3N5异质结的定向电荷转移机制。这项研究为开发高效异质结光催化剂提供了一种可行的方法。