首页 > 期刊 > CCS Chemistry

  

CCS Chemistry:工作高效不疲劳,只须让催化剂动起来

2020, 2(1): 31-41  doi: 10.31635/ccschem.020.201900065
[摘要]  (7619) [HTML全文] (7619)
摘要:

        美国西北大学黄嘉兴教授、湖南大学周一歌教授及成都电子科技大学康毅进教授提出 “流动电催化”(Fluidized Electrocatalysis)策略,显著提高电催化剂的抗疲劳性能以及电催化反应的稳定性,甚至可以让很不稳定的催化剂达到持久稳定的催化效果。




   在电催化反应中,催化剂材料通常被粘附在电极,比如碳电极的表面,而后浸入电解液中进行长时间、连续的电化学反应(图1a)。电催化反应有一些普遍的疲劳机制,例如反应中间体可能导致催化剂表面中毒,催化剂颗粒在长时间的电化学“压力”下发生团聚、烧结、溶解或钝化等。另外,反应活性物种到催化剂表面的扩散受限也会导致催化电流衰减。催化剂疲劳会大大降低催化剂的工作效率,缩短其寿命,导致整个电化学体系性能下降。针对此问题,传统的策略是从催化剂本身出发调控其表面状态和化学成分,或通过改进催化剂载体材料来防止催化剂颗粒的聚集和脱落,然而由于催化剂疲劳机制多种多样、催化剂及其载体的材料、成分和结构也各不相同,这些针对于催化材料本身的解决方案往往只适用于特定的催化剂,不具有普适性。



图1


   在电催化过程中,电极反应只有电子转移步骤需要依赖电极。然而在常规催化体系中,由于电极一直处于极化状态,这会对催化剂产生不必要的额外的电化学压力,从而导致其疲劳和性能衰减。基于以上思考并结合单颗粒电分析化学的进展,美国西北大学黄嘉兴教授、湖南大学周一歌教授及成都电子科技大学康毅进教授合作,提出“流动电催化”的新策略来提高电催化剂的抗疲劳性能(图1b):催化剂颗粒并非以传统方式固定在电极上,而是在电解液中流动。

   单个颗粒与电极碰撞时产生瞬态法拉第电流积累起来,输出连续、稳定、可随催化剂用量不断增大的电流。对每一个催化剂颗粒而言,电场只在粒子与电极发生碰撞时才会作用于粒子并驱动电子转移,从而极大地降低了电化学压力作用于催化剂颗粒上的时间尺度,抑制了许多常见的疲劳机制。同时,流动模型在空间和时间上将电子转移步骤从其它相对较慢的电极反应步骤(如物质传质过程)分开,使得电极反应不再受传质限制,因而,流动催化剂还将经历更快的反应动力学。

图2

   该工作以最典型的Pt/C颗粒为模型催化剂,首先在碳微电极上分析了Pt/C单颗粒的析氧反应电化学行为(图2),如颗粒碰撞频率、碰撞时间尺度、单颗粒产生的催化电流强度等。随后证明流动催化模型的输出电流表现出随电极面积及催化剂颗粒浓度的增大而增加的特征,而固定催化模型的输出电流则随催化剂负载量的增加很快达到饱和。同时通过计算,发现由于传质更加有效,流动体系中单颗粒的电流效率比固定体系高出两到三个数量级。这也是为什么流动体系中单位时间内同时参加反应的催化剂颗粒数远远小于固定体系,却依然能达到与后者相差不大的电流输出的原因。


图3

   随后,该工作以析氧反应(OER)(图3)、甲醇氧化反应(MOR)及析氢反应(HER)(图4)三个经典电催化反应为模型,验证了流动电催化策略的确可极大缓解一系列不同催化剂疲劳机理,如高过电位下催化剂颗粒的团聚与溶解、反应中间体的毒化、催化剂粉化及脱落等。在OER与MOR模型中,通过考察单个催化剂颗粒所贡献的法拉第电量,发现即使在单个流动Pt/C颗粒的贡献远远大于固定颗粒的情况下,前者的烧结程度也不明显,但后者却已经彻底烧结了。这表明在流动电催化反应中,催化剂颗粒的抗疲劳性能的确得到了提升。


图4

   综上所述,该工作提出了流动电催化策略,将催化剂颗粒的工作模式由传统的长时间、连续性工作转变为轮流、间断性工作,避免了电化学压力的不断积累,同时,催化剂颗粒将经历更快的反应动力学并输出更高的电流效率,有利于抑制材料性能的衰减,提高催化剂长时间工作的稳定性。

   当然,该流动策略的操作方式不可避免会带来体积能量密度的局限,但仍然可付诸大型固定电源供给与大规模电合成等实际应用场景。同时,流动催化剂较固定催化剂具有更高的稳定性,且易于回收及再利用,因此长时间的工作成本将远远低于固定催化剂。衡量体积能量密度与成本,该策略与改善、发展新型催化剂的实践可结合并行,有望发展成一种普适的提高电催化体系总体性能及稳定性的简单、高效的新方法。

   该工作以封面文章形式发表在CCS Chemistry 2020年第一期,并于近期被美国化学会新闻周刊Chemical & Engineering News (C&EN)报道(https://cen.acs.org/synthesis/catalysis/Free-floating-electrocatalysts-outperform-tethered/98/web/2020/02)。牛津大学Richard G.Compton教授评价该工作为:“The work is groundbreaking in that it takes particle-impact experiments from the academic study of single nanoparticle electrocatalysis and suggests that they can be scaled up with considerable benefit.”

文章详情:

Fluidized Electrocatalysis

Yi-Ge Zhou, Yijin Kang, and Jiaxing Huang

Link: https://doi.org/10.31635/ccschem.020.201900065

Citation: CCS Chem. 2020, 2, 31–41

 








  

亮点
CCS Chemistry:高氮含量,孔径可控,多级自组装合成优越电容器性能N掺杂介孔碳材料
2020, 2(2): 870-881  doi: 10.31635/ccschem.020.202000233
[摘要]  (8326) [HTML全文] (8326) [PDF 0KB] (8326)
摘要:

   吉林大学化学学院、无机合成与制备化学国家重点实验室乔振安课题组提出了一种多级自组装方法制备了具有高吡啶N掺杂介孔碳材料。得到的高吡啶N掺杂介孔碳材料,显示出了超高的面积归一化电容,远高于活性炭的理论电化学双电层电容。



   介孔碳材料具有可调节的孔径,大的比表面积以及出色热稳定性,在吸附、催化、能量转换和存储方面有非常广阔的应用前景,其中氮掺杂的介孔碳材料因性能尤为突出而备受关注,尤其是吡啶氮构型(N-6) 、吡啶酮/吡咯氮构型(N-5) 具有丰富的负电子缺陷位点,在改善材料性能中起着关键作用。近年来,氮掺杂的介孔碳材料合成方法不断被提出,例如自组装方法省时、易操作且环境友好,但氮掺杂量低、不稳定、吡啶和吡啶酮/吡咯构型的氮含量低等问题依然存在。



图 1


   最近,吉林大学乔振安课题组报道了一种简便、多级自组装策略,合成一系列具有可调节孔径(8-25nm)的高吡啶N掺杂介孔碳材料GO @ NMC(图1)。该方法以含有吡啶氮构型的2,6-二氨基吡啶(PDAP)作为单体,PS-b-PEO(polystyrene-b-poly(ethylene oxide))形成的胶束作为模版,氧化石墨烯(GO)作为结构导向剂和富集胶束的平台。通过对嵌段共聚物PS-b-PEO中PS嵌段长度的调节,实现了介孔尺寸的精确可调。在700℃惰性气体中煅烧后,N掺杂的介孔碳材料仍然具有高达近19%的氮含量,其中来自N-6和N-5构型的氮含量更是高达49.9%和35.3%(图2)。



图 2


   由于该材料本身的二维结构,高吡啶和吡咯构型的氮含量,以及可控的介孔,使其成为潜在的超级电容材料。作者通过实验进一步证实了此材料极好的电容特性和可逆性。材料的面积归一化电容达到90.6 μF cm-2,远高于活性炭的理论电化学双电层电容(theoretical electrochemical double-layer capacitance)的面积归一化电容(15-25 μF cm-2)和以往报道的常规碳材料的面积归一化电容(图3)。单位表面积如此出色的电容量归因于材料本身提供的高比例赝电容贡献,作者通过Trasatti 和 Dunn两种分析方法得出了高达约45%赝电容贡献。



图 3


  综上所述,作者开发了一种简便的多级分子自组装体,用于合成新型的二维 N掺杂介孔碳材料GO @ NMC。由于其高的N含量、大的中孔尺寸以及二维结构,使GO @ NMC具有超高的表面积归一化电容和出色的循环稳定性。该工作以research article的形式发表在CCS Chemistry,并在CCS Chemistry官网“Just Published”栏目上线。

文章详情:

Multistage Self-Assembly Strategy: Designed Synthesis of N-doped Mesoporous Carbon with High and Controllable Pyridine N Content for Ultrahigh Surface-Area-Normalized Capacitance 

Liangliang Zhang , Tao Wang , Tu-Nan Gao , Hailong Xiong , Rui Zhang , Zhilin Liu , Shuyan Song , Sheng Dai & Zhen-An Qiao *Citation:CCS Chem. 2020, 2, 870–881

文章链接:https://doi.org/10.31635/ccschem.020.202000233