-
-
无机化学学报
Chinese Journal of Inorganic Chemistry
主管 : 中国科学技术协会
刊期 : 月刊主编 : 游效曾
语种 : 中文主办 : 中国化学会
ISSN : 1001-4861 CN : 32-1185/O6展开 >《无机化学学报》由中国化学会主办,是展示我国无机化学研究成果的学术性期刊,月刊。1985年由化学前辈戴安邦院士(发起)创刊,现任主编游效曾院士。编辑部设在南京大学化学化工学院化学楼。报道我国无机化学领域的基础研究和应用基础研究的创新成果,内容涉及固体无机化学、配位化学、无机材料化学、生物无机化学、有机金属化学、理论无机化学、超分子化学和应用无机化学、催化等,着重报道新的和已知化合物的合成、热力学、动力学性质、谱学、结构和成键等。设有综述、研究快报及论文等栏目。
本刊所刊论文均为美国《科学引文索引》(SCI)网络版、美国《化学文摘》(CA)、《中国学术期刊文摘》(中、英文版)、《中国科技论文与引文数据库(CSTPCD)》、《中国科学引文数据库》、《中文科技期刊数据库》、《中国期刊全文数据库》、《中国核心期刊(遴选)数据库》、中国台湾华艺《中文电子期刊服务》等国内外多种著名检索刊物和文献数据库摘引和收录。
《无机化学学报》2011年每期200页,定价28.00元、全年定价336.00元。本刊由各地邮局征订,邮发代号28-133。也可直接向编辑部订阅。
- 影响因子: 0.8
期刊内检索
期刊内热点文章
与传统室温磷光(RTP)材料相比,室温磷光碳点(RTP-CDs)具有生物相容性好、毒性较低和性能稳定等优点,近些年获得了研究者们的青睐。然而,其磷光寿命较短,通常为毫秒级水平,这也限制了其应用。因此,如何促进碳点的系间穿越与稳定碳点的激发三线态是实现其超长室温磷光(URTP)发射与应用的关键。本文依据近年来超长室温磷光碳点(URTP-CDs)的最新研究进展,归纳总结了其构建策略,及其在防伪与信息加密、传感、生物成像和发光二极管等方面的应用,并对其发展前景进行了展望。
We report five coordination polymers (CPs) based on fluorescent ligands [1, 6-di(1H-imidazol-1-yl)pyrene (dip), 9, 10-di(1H-imidazol-1-yl)anthracene (dia)] and anionic ligands [cyclohexane-1, 4-dicarboxylic acid (H2cda), camphoric acid (H2cpa)]. In [Cd(dip)(cda)]·4H2O}n (1), the Cd2+ ions, acting as tetrahedral nodes, are linked by dip and cda2- ligands with four Cd2+ ions into five-fold interpenetrating network array of topology of dia. In {[Cd(dip) (cpa)]·4H2O}n (2), the Cd2+ ions, acting as a 4-connector, are linked by cpa2- and dip ligands into a 3D framework of cds topology. In {[Ni(dia)2Cl2]·DMF}n (3), the Ni2+ ion is linked by four dia ligands into a layer structure, and 1D channels of a cross-section of 1.35 nm×0.96 nm are formed. In {[Cd(dia)2(H2O)2](NO3)2·2DMSO}n (4), the dia ligands connected Cd2+ ions into a 2D layer, and 1D channels are formed between adjacent layers with a cross-section of 0.87 nm×0.43 nm. In [Zn(dip)Cl2]n (5), the Zn2+ ion is linked by dip ligands into an infinite 1D chain. The infrared, thermal gravimetric, and fluorescent emission data were collected and analyzed for these coordination polymers.
Herein, a one-pot chemical reduction method was reported to prepare folic acid (FA)-stabilized silver nanoclusters (FA@Ag NCs), in which FA, hydrazine hydrate, and silver nitrate were used as capping agent, reducing agent, and precursor, respectively. Several technologies were employed to investigate the structures and optical properties of FA@Ag NCs, including transmission electron microscopy (TEM), X ray photoelectron spectrometer (XPS), Fourier transform infrared spectrometer (FTIR), X-ray diffractometer (XRD), fluorescence spectrometer, and ultraviolet visible absorption spectrometer. FA@Ag NCs were suggested to be highly dispersed and spherical with a size of around 2.8 nm. Moreover, the maximum excitation and emission wavelengths of FA@Ag NCs were 370 and 447 nm, respectively. Under the optimal detection conditions, FA@Ag NCs could be used to effectively detect malachite green with the linear detection range of 0.5-200 μmol·L-1. The detection limit was 0.084 μmol·L-1. The fluorescence-quenching mechanism was ascribed to the static quenching. The detection system based on FA@Ag NCs was successfully used for the detection of malachite green in actual samples with good accuracy and reproducibility.
AgVO3/ZIF 8 composites with enhanced photocatalytic effect were prepared by the combination of AgVO3 and ZIF-8. X-ray diffraction (XRD), scanning electron microscopy (SEM), high-power transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS), photoluminescence (PL) spectroscopy, electron spin resonance (ESR) spectroscopy, transient photocurrent and electrochemical impedance spectroscopy (EIS) were used to characterize binary composites. Tetracycline (TC) was used as a substrate to study the performance efficiency of the degradation of photocatalysts under light conditions, and the degradation effect of TC was also evaluated under different mass concentrations and ionic contents. In addition, we further investigated the photocatalytic mechanism of the binary composite material AgVO3/ZIF-8 and identified the key active components responsible for the catalytic degradation of this new photocatalyst. The experimental results show that the degradation efficiency of 10% AZ, prepared with a molar ratio of 10% AgVO3 and ZIF-8 to TC, was 75.0%. This indicates that the photocatalytic activity can be maintained even under a certain ionic content, making it a suitable photocatalyst for optimal use. In addition, the photocatalytic mechanism of binary composites was further studied by the active species trapping experiment.
This paper delves into the theoretical mechanisms of the electronic structure and optical properties of aluminum-based semiconductors (AlX, X=N, P, As, Sb) and indium-based semiconductors (InX, X=N, P, As, Sb) as potential materials for optical devices. Band structure calculations reveal that, except for InSb, all other compounds are direct bandgap semiconductors, with AlN exhibiting a bandgap of 3.245 eV. The valence band maximum of these eight compounds primarily stems from the p-orbitals of Al/In and X. In contrast, the conduction band minimum is influenced by all orbitals, with a predominant contribution from the p-orbitals. The static dielectric constant increased with the expansion of the unit cell volume. Compared to AlX and InX with larger X atoms, AlN and InN showed broader absorption spectra in the near-ultraviolet region and higher photoelectric conductance. Regarding mechanical properties, AlN and InN displayed greater shear and bulk modulus than the other compounds. Moreover, among these eight crystal types, a higher modulus was associated with a lower light loss function value, indicating that AlN and InN have superior transmission efficiency and a wider spectral range in optoelectronic material applications.
Three efficient methods for the synthesis of a series of Cu(Ⅱ) and Cu(Ⅰ) complexes based on imidazo[1,5-a] pyridine derivatives were developed. These methods include the following: (ⅰ) Cu(Ⅱ) salts were used as metal sources and N, N-dimethylformamide was employed as a solvent as well as a reductant to produce Cu(Ⅰ) complexes. (ⅱ) An iodidecontaining compound was utilized as a ligand and iodide source to prepare complexes. An in situ metalligand reaction occurred and an iodide-bridged copper complex was generated. (ⅲ) A series of aldehydes were added to the reaction systems to induce in situ metal-ligand reactions between the aldehydes and the imidazo[1,5-a]pyridine derivatives, producing polydentate ligand scaffolds. Eight complexes were prepared and characterized. The catalytic activities of these complexes toward the ketalization of ketones by ethylene glycol were investigated. With the exception of complex 4, the remaining seven complexes all showed high catalytic activity. The lower activity of 4 may be due to the larger radius of bridging iodide ions and the shorter Cu(Ⅰ)…Cu(Ⅰ) distance.
Sulfur-doped iron-cobalt tannate nanorods (S-FeCoTA) derived from metal-organic frameworks (MOFs) as electrocatalysts were synthesized via a one-step hydrothermal method. The optimized S-FeCoTA was interlaced by loose nanorods, which had many voids. The S-FeCoTA catalysts exhibited excellent electrochemical oxygen evolution reaction (OER) performance with a low overpotential of 273 mV at 10 mA·cm-2 and a small Tafel slope of 36 mV·dec-1 in 1 mol·L-1 KOH. The potential remained at 1.48 V (vs RHE) at 10 mA·cm-2 under continuous testing for 15 h, implying that S-FeCoTA had good stability. The Faraday efficiency of S-FeCoTA was 94%. The outstanding OER activity of S-FeCoTA is attributed to the synergistic effects among S, Fe, and Co, thus promoting electron transfer, reducing the reaction kinetic barrier, and enhancing the OER performance.
成功合成了2个新型吡啶基配体:4-[4-(9,9-二甲基-9H-芴-2-基)苯基]吡啶(dmfpp)和9-[4-(吡啶-4-基)苯基]-9H-咔唑(ppcbz),并通过1H NMR和13C NMR进行了表征。将2个吡啶基配体分别与[Cu4(PPh3)4I4]按化学计量比反应,合成了2个双核Cu(Ⅰ)配合物[Cu2(dmfpp)2(PPh3)2I2]·2CH2Cl2(1)和[Cu2(ppcbz)2(PPh3)2I2](2),并进行了元素分析、荧光光谱、热重、单晶和粉末X射线衍射表征。配合物1属于单斜晶系P21/c空间群,a=1.853 43(3) nm,b=1.266 34(2) nm,c=1.833 48(3) nm,β=106.319 3(18)°,V=4.082 24(12) nm3。配合物2属于三斜晶系$P \overline{1}$空间群,a=0.941 07(4) nm,b=1.128 86(4) nm,c=1.697 77(6) nm,α=87.775(3)°,β=79.622(3)°,γ=71.418(3)°,V=1.681 26(11) nm3。热重分析结果表明,这2个配合物具有良好的热稳定性,当温度超过220℃时结构才开始分解。荧光分析显示,在激发波长为370 nm时,配合物1和2均发出绿色荧光。配合物1的光致发光量子产率(PLQY)为0.02,配合物2的PLQY高达0.79。
隧道颗粒物是地铁运行产生的主要污染物之一。粉末X射线衍射与X射线光电子能谱分析结果表明,从地铁隧道颗粒物回收磁性材料的主要成分为零价铁(ZVI)。以罗丹明B (RhB)为模型污染物,在低功率LED紫外光、可见光及真实太阳光照射下,ZVI具有优异的催化活化过二硫酸盐(PDS)降解RhB的性能,均可在2.0 min内实现RhB (10.0 mg·L-1)的完全降解。通过活性物质捕获实验证实SO4·-、·OH、·O2-和h+均参与了RhB的降解。此外,还探究了PDS投加量、催化剂投加量、污染物浓度、pH、共存离子和共存有机质对RhB降解的影响。结果表明,该磁性颗粒物可在较宽的pH范围(2.0~10.0)、共存离子(Cl-、SO42-、HCO3-、H2PO4-和NO3-)、共存有机质(腐殖酸)和真实水体环境下实现RhB的高效去除。此外,运用磁回收技术实现了ZVI的回收及循环利用。
在溶剂热条件下,利用设计合成的对映纯手性配体S-4'-[(2-羧基-5-氧代吡咯烷-1-基)甲基]-(1,1'-联苯基)-3,5-二甲酸(H3L)和Eu(Ⅲ)盐反应成功得到了一个新的同手性配位聚合物{[Eu (L)]·0.5CH3CN}n (1)。单晶X射线衍射分析显示,配合物1结晶于四方晶系I41手性空间群。在1中,配体阴离子L3-为七桥联配体,联结Eu(Ⅲ)离子形成7-连接的3D螺旋结构。配体H3L不仅把手性传递给金属有机框架,并诱导产生了螺旋手性。1具有优良的配体敏化发光和热稳定性。以配合物1为荧光探针,研究了其对常见氨基酸分子的构型识别性能。结果表明,天冬氨酸、丙氨酸、赖氨酸、亮氨酸、酪氨酸和缬氨酸这几种氨基酸的不同对映体对1的荧光强度的影响差异显著,配合物1可以对以上氨基酸的构型进行荧光识别检测。
在水热条件下,以硫酸锰为金属源,1-萘甲酸(Hna)、4,4'-二甲基-2,2'-联吡啶(Dmbpy)为配体合成了一例锰配合物[Mn (na)2(Dmbpy)(H2O)]·Hna (1),并通过元素分析、单晶X射线衍射、粉末X射线衍射、红外光谱、Hirshfeld表面分析和热重分析进行了表征。单晶X射线衍射结果表明:1属三斜晶系$P \overline{1}$空间群,中心金属Mn(Ⅱ)位于六配位扭曲的三棱柱构型中,分子间通过C/O—H···O、C—H···π和π···π相互作用形成二维超分子网状结构。利用CrystalExplorer对1的Hirshfeld表面进行了分析。固态荧光光谱显示,1在347 nm的激发波长下,最大发射波长为423 nm。在荧光传感实验中,1对Fe3+表现出选择性识别的能力,检出限为0.52 μmol·L-1,此外还探究了Fe3+猝灭1的荧光的机理。
通过加入聚苯胺(PANI)提高聚乙烯醇(PVA)水凝胶电解质的导电性,并引入纳米SiO2,使其与PVA中的羟基形成氢键相互作用,从而改善电解质的力学性能、离子传输能力和结构稳定性。所制备的PVA/PANI/SiO2导电水凝胶电解质表现出高的拉伸应力(15.45 MPa)、应变(516.09%)、离子迁移数(0.56)和离子电导率(0.992 mS·cm-1),以及宽的电化学窗口(2.56 V)。使用该电解质的对称电池可实现超过1 200 h的稳定循环且锌沉积均匀。改性后的电解质显著提升了电池的电化学和力学性能,同时增强了其循环稳定性和电化学可逆性。
以静电纺丝技术制备的TiO2纳米纤维为基质,硝酸铋为铋源,乙二醇为还原剂,采用原位水热法构筑了Bi/Bi2S3/TiO2复合纤维材料。利用粉末X射线衍射、X射线光电子能谱、扫描电子显微镜、紫外可见吸收光谱、光电流响应、电化学阻抗谱和荧光发射光谱对复合纤维材料的形貌、结构和光电性能进行了表征和分析。在气固相反应环境下,对Bi/Bi2S3/TiO2复合纤维的光催化CO2还原性能进行了研究。结果表明,金属Bi纳米粒子和鳞片状Bi2S3有序构筑在TiO2纳米纤维表面。金属Bi的表面等离子体共振(SPR)效应与Bi2S3/TiO2异质结产生了协同作用,有效增强了Bi/Bi2S3/TiO2的光催化CO2还原活性,还原反应主要产物为CH4和CH3OH,产率分别达到4.21和9.86 μmol·h-1·g-1,约为Bi2S3/TiO2的3倍。
采用原位聚合法制备了氯氧化铋(BiOCl)与聚苯胺(PANI)复合的Ⅱ型异质结光催化剂BiOCl/PANI,并采用X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)、紫外可见漫反射光谱(UV-Vis DRS)和N2吸附-脱附测试等多种技术手段对其进行了表征,考察了BiOCl/PANI在模拟可见光下对罗丹明B (RhB)的光催化降解性能。实验结果表明:BiOCl/PANI催化剂比PANI和BiOCl具有更高的光催化活性,在RhB质量浓度为50 mg·L-1、PANI与BiOCl的物质的量之比为0.02∶1、50 mg·L-1的催化剂条件下,所制备的BiOCl/PANI光催化150 min后,RhB降解率为98.8%,速率常数为0.031 min-1;经过4次循环实验后,RhB降解率从98.8%降低至98.4%,表现出良好的稳定性和可重复利用性。光催化剂BiOCl/PANI实现了电子和空穴对的快速分离,降低了二者在催化剂内部的复合速率,提高了光催化性能。
以提高GaN/ZnO异质结光解水制氢性能为目标,采用第一性原理方法研究了Li和Au元素掺杂GaN/ZnO异质结的电子结构、光学性质和光催化性能。电子结构计算表明GaN/ZnO异质结为直接带隙半导体,异质结类型为Z型,带隙为1.41 eV,能有效促进载流子分离。Li、Au掺杂后的各结构中除Li替位Zn结构外,均具有磁性。光学性质分析的结果表明,掺杂Li、Au元素可以提高体系的吸收系数,其中Li替位Zn后异质结具有较大的光吸收系数,同时具有较大的功函数(7.37 eV)和界面电势差(2.55 V),表明其可见光利用率较高,界面结构稳定且具有较大的内建电场,可以更有效地促进电子与空穴的迁移从而减小电子-空穴对的结合。Bader电荷分析表明掺杂元素Li和Au均失去电子。电子从GaN层向ZnO层转移,在界面处形成了一个有效的内电场。Li替位Zn和Au同时替位近位的Ga和Zn所对应的2种结构的层与层之间转移的电子较多,说明其界面电势差较大且拥有较高的光生载流子迁移速率。光解水制氢性能分析表明,ZnO薄膜、GaN/ZnO异质结、Li替位Ga以及Li同时替位远位的Ga和Zn四种体系在pH=0时,满足光解水制氢的条件。GaN薄膜、ZnO薄膜和Li同时替位远位的Ga和Zn三种体系在pH=7时满足光解水制氢的条件。
为开发新型的铁铁氢化酶模拟物,我们合成并表征了2个含氨基膦配体的二铁配合物。配合物[Fe2(CO)6(μ-pdt)] (1)(pdt=SCH2CH2CH2S)与双膦配体(Ph2PCH2)2NC10H15 (dppad)和Me3NO·2H2O反应得到了主产物(60% 产率)[Fe2(CO)5(mpad)(μ-pdt)] (2)和副产物(6%产率)[Fe2(CO)4(κ2-dppad)(μ-pdt)] (3),其中mpad=Ph2PCH2NHC10H15。配合物2和3以元素分析、红外光谱、核磁共振 1H和 31P波谱、单晶X射线衍射进行表征。此外,用循环伏安法研究了配合物2和3的电化学和电催化产氢活性,结果表明在有醋酸作为质子源的条件下,配合物2和3均可以催化质子还原生成氢气。其中,配合物3的催化效率(转换频率)要稍微优于配合物2。
采用高温固相法制备了LiNi0.5Mn1.5O4(LNMO),然后采用湿化学法在多面体LNMO表面涂覆AlPO4(AP),制备得到LNMO-AP复合材料。实验结果表明,AlPO4与LNMO的质量比为1%时制备的LNMO-1% AP|Li电池表现出较好的电化学性能,其在1C条件下循环450次后,放电比容量为108.78 mAh·g-1,而未涂覆AP的LNMO|Li电池的放电比容量仅为86.04 mAh·g-1。特别是在5C和10C的高倍率条件下,前者的电化学性能远远优于后者。这归因于AP涂层使与电解液接触的LNMO表面更加稳定,有效地促进了Li+的传输并降低了电极的极化电压。
以二甲基亚砜(DMSO)为溶剂,通过溶剂热挥发法合成了硫酸锌开放骨架[Zn(SO4)(DMSO)] (1)基质。再将2,6-萘二酸(P)低剂量掺杂到基质1中,制备了一种同时具有荧光和室温磷光(RTP)性质的复合物P@1。P@1具有肉眼可见的绿色RTP,持续时间约为2 s。P@1对Pb2+表现出选择性磷光增强响应,检测限为2.52 μmol·L-1。其检测机制主要是Pb—O配位作用诱导体系磷光增强。有趣的是,P@1可作为双通道探针通过荧光猝灭快速检测Fe3+,检测限为0.038 μmol·L-1。其识别机制可能归因于P@1与Fe3+之间的竞争性能量吸收。
用混合配体苯甲酸(HBA)和4-羟基-2,2'∶6',2″-三联吡啶(4-OH-terpy),与镧系硝酸盐通过超声溶解和常规溶液法成功合成了2种新型镧系元素配合物:[Sm2(BA)6(4-OH-terpy)2]·2H2O·2EtOH (1)和[Pr2(BA)6(4-OH-terpy)2(H2O)2]·HBA·H2O (2)。在合成过程中,4-羟基-2,2'∶6',2″-三联吡啶作为中性配体参与反应,而苯甲酸则以去质子化形式(BA-)作为酸性配体与镧系离子配位。这2种配合物的晶体结构通过单晶X衍射得到了精确解析。同时还采用了元素分析、红外和拉曼光谱以及粉末X射线衍射技术来深入探究这2种配合物的物理化学性质。单晶X射线衍射数据显示,尽管2种配合物的结构存在差异,但它们均属于三斜晶系$P \overline{1}$空间群,且中心镧系元素离子具有相同的配位数,但配位环境却有所不同。为了全面评估这2种配合物的热稳定性,进一步实施了包括热重分析-微分热重分析-差示扫描量热法、傅里叶变换红外光谱分析以及质谱联用(TG-DTG-DSC/IR/MS)技术在内的综合测试。同时对配合物逸出气体的三维红外堆积图和质谱图进行了深入探究。此外,对配合物1的荧光特性研究表明,它能够展现出与Sm3+特征跃迁相匹配的荧光发射。

系统研究了中空纤维NaA分子膜在蒸汽渗透中结合真空抽吸和N2吹扫操作对乙醇深度脱水的过程。研究发现吹扫作用在乙醇深度脱水中占主导作用,与未加吹扫气的对照工况(操作温度100℃、原料液进料流量为30 mL·min-1)相比,N2吹扫(吹扫气流量为60 mL·min-1)可加倍提升脱水速率,快速得到超低含水量乙醇(水的质量分数约0.5%),效率提升约43%;升高温度至120℃时,增大原料液进料流量为50 mL·min-1时乙醇产品中水的质量分数可进一步降至0.068‰,收率达99.86%。
为研究取代基对铱磷光配合物光物理性质的影响,以2,4-二(2,4-二取代基苯基)吡啶[2,4-(2,4-2R-phenyl)2py,R=甲基(HL1)、甲氧基(HL2)、氟(HL3)、三氟甲基(HL4)]为主配体,即在主配体上2个苯基的2位和4位同时引入4个相同的甲基、甲氧基、氟或三氟甲基,同时以乙酰丙酮(Hacac)为辅助配体,合成出4个铱磷光配合物(Ln)2Ir (acac)[n=1(Ir1)、2(Ir2)、3(Ir3)、4(Ir4)]。通过元素分析、核磁共振谱(1H NMR和13C NMR)和单晶X射线衍射表征了铱磷光配合物的组成、空间结构和分子堆积。通过溶液和固态光致发光光谱、紫外可见吸收光谱、荧光寿命和理论计算对铱磷光配合物的光物理性能进行了深入和系统的研究。结果表明:4个铱磷光配合物均呈稍微扭曲的八面体构型,中心Ir(Ⅲ)分别与2个主配体的C和N原子配位形成五元螯合环,同时和辅助配体acac-的2个氧原子配位形成稳定的六元螯合环。配合物Ir1、Ir2、Ir3和Ir4在溶液状态下的发射波长分别为537、515、514和553 nm,溶液中量子产率分别为68%、83%、88%和81%,荧光寿命分别为26.75、163.93、64.50和330.39 ns。4个铱磷光配合物具有不同的电子云分布特征,取代基能够调控电子云在苯环上的分布,进一步实现发射波长、发光颜色,荧光寿命和分子堆积的调控。
在溶剂热条件下通过2,5-双(2H-四唑-5-基)对苯二甲酸配体(H4dtztp)与稀土Eu3+自组装得到了一例二维铕金属有机骨架[Eu (dtztp)0.5(H2dtztp)0.5(DMF)3]·0.113H2O (Eu-MOF),其中DMF为N,N-二甲基甲酰胺。利用X射线单晶衍射、粉末X射线衍射、热重分析和元素分析等技术确定了Eu-MOF的空间结构、相纯度和稳定性,同时,对Eu-MOF的固态荧光以及抗生素检测功能进行了探究。结果表明:Eu-MOF属于三斜晶系,
基于原子层沉积技术(ALD)制备TiO2和Al2O3纳米层并结合高温热处理优化工艺,研究了异质氧化物双层表面包覆和晶格内双阳离子梯度掺杂的2种表界面修饰法对NaNi1/3Fe1/3Mn1/3O2(NFM)正极材料电化学储钠性能和热稳定性的提升作用,以及其产气抑制效应。结果表明,在2.0~4.0 V (vs Na/Na+)工作电压和1C (120 mA·g-1)电流密度下,当容量达到第2次循环容量的60%时,经表面包覆的NFM@TiO2(10)@Al2O3(10)和表层晶格掺杂的NFM#Ti (35)#Al (10)正极材料(括号中数字对应ALD沉积的次数)分别能够循环319和358次,显著优于未修饰NFM材料(250次),同时通过差示扫描量热法(DSC)测得的热失控温度分别提升了6.1和9.7℃。原位差分电化学质谱(DEMS)测试表明,表面包覆显著抑制了H2等主要气体成分的形成,而晶格掺杂避免了电解液的二次分解,这可能是由于电解液质子化和高电压下氧化分解等有害副反应的减少。
通过将纳米Bi颗粒与三维多孔碳(3DPC)材料复合制备得到Bi/3DPC复合材料,有效提高了Bi的电化学性能。3DPC作为碳框架能缓冲充放电过程中Bi的体积膨胀以及提升材料导电性,且其微孔和介孔能够增加材料的比表面积,为吸附钠离子提供活性位点。Bi和3DPC发挥协同效应,在钠离子电池中展现出良好的倍率性能和长期循环稳定性。在5 A·g-1的电流密度下,Bi/3DPC在循环1 000圈后仍保持268.52 mAh·g-1的比容量。
通过引入—OH、—NH2和—SO3H极性官能团,设计了具有高比表面积、亚胺键连接的二维三聚茚酮基共价有机骨架(truxenone-based covalent organic frameworks,TRO-COFs),并通过巨正则蒙特卡洛(giant canonical Monte Carlo,GCMC)模拟和密度泛函理论(density functional theory,DFT)探究了298 K和0~1.0×105 Pa条件下极性官能团对TRO-COFs的CO2捕获性能的影响。结合能和内聚能的分析表明官能团引入后结构仍保持较高的稳定性。极性官能团的引入显著增强了TRO-COFs的CO2吸附性能。CO2吸附量大小顺序为TRO-COF-SO3H>TRO-COF-NH2>TRO-COF-OH>TRO-COF-H。在298 K和1.0×105 Pa条件下,TRO-COF-SO3H表现出8.02 mmol·g-1的CO2吸附量及CO2优于N2和CH4的选择性(37和26)。同时,通过径向分布函数和气体吸附密度分布也进一步说明了不同极性官能团对CO2捕获与分离性能影响的差异。最后,从吸附热、范德瓦耳斯力和库仑相互作用等多个角度详细阐明了极性官能团的作用机制。
采用两步水热法制备了BiSbO4/BiOBr复合材料,并对其微观形貌、物相结构、化学组成、光学性能、光催化性能进行测试。结果表明:由纳米棒组成的BiSbO4成功负载到片状BiOBr表面,二者产生的异质结结构不仅拓宽了催化剂的光响应范围还提升了光生电子-空穴对分离效率。其在模拟可见光下的光催化性能都优于单一的BiSbO4和BiOBr,当BiSbO4在复合材料中的质量分数为6%时,所制备的复合材料的光催化降解亚甲蓝(MB)性能最佳,其在模拟可见光下照射120 min后对MB的降解率达91.3%,经过4次循环后降解率仍有77.4%。
以V2O5/TiO2催化剂为基体,制备了一系列Ce、Mn改性催化剂,并结合氮气吸附-脱附、X射线衍射、X射线光电子能谱、扫描电子显微镜分析了催化剂的结构及活性组成,探究了其反应活性。结果表明,制备的改性V2O5/TiO2催化剂分散性好,Ce-Mn双金属改性提高了催化剂的NH3转化率和N2选择性。Ce、Mn负载量(Ce或Mn与TiO2的质量比)分别为8%、6%时,310℃下改性材料的NH3转化率为100%,N2选择性为78%。原位漫反射傅里叶变换红外光谱表征显示催化剂表面羟基吸附的NH3会优先参与反应,温度升高后催化剂表面的Brønsted和Lewis酸位点上吸附的NH3开始参与反应,较高温度下Lewis酸位点是主要的NH3转化位点。
研究了不同油酸(OA)、油胺(OLA)配体添加量在制备CdSe纳米晶体中对量子点荧光特性的影响,深入分析了OA和OLA配体在CdSe纳米晶体生长过程中的作用机理。在采用逐层生长法制备CdSe纳米晶体时,研究了OA和OLA配体对晶体尺寸及尺寸分布的影响,并制备了尺寸分布良好的较大尺寸CdSe纳米晶体。采用多种方法对CdSe纳米晶体的光学性能、晶体结构、微观形貌及尺寸分布进行表征分析。结果表明,OA配体的添加会使CdSe纳米晶体发射峰红移,且添加量与发射峰红移波长呈正相关,发射峰可调范围为548.5~604.0 nm;OLA配体添加量较少时会使CdSe纳米晶体发射峰蓝移,但随着OLA配体添加量的增加发射峰逐渐红移,发射峰可调范围为548.0~584.4 nm;在逐层生长法中引入OA和OLA配体可有效改善由于多次逐层生长而产生的发射峰双峰现象。最终通过调整制备工艺,制备了荧光发射可视化分离的4种CdSe纳米晶体,其尺寸分布良好,具有较高的光致发光量子产率(PLQY),抗光漂白性能较好。
通过配体取代反应合成了2个双膦配体桥联的四铁配合物[Fe4(CO)10(μ-SCH2CH (CH3) S)2(dppa)](1)和[Fe4(CO)10(μ-SCH2CH (CH3) S)2(trans-dppv)](2),其中dppa=双(二苯基膦)乙炔,trans-dppv=trans-1,2-双(二苯基膦)乙烯。配合物的结构经过元素分析、红外光谱、核磁共振氢谱、磷谱以及单晶X射线衍射等方法的表征。用循环伏安法研究了新配合物的电化学性质,结果表明它们均可以在乙腈溶液中催化醋酸中的质子还原产生氢气。其中配合物2的催化效率要明显优于配合物1。
采用传统固相法制备了La3+掺杂的0.28Pb (In1/2Nb1/2) O3-0.32Pb (Zn1/3Nb2/3) O3-0.3PbTiO3-0.1PbZrO3(PIN-PZN-PZT)四元压电陶瓷,研究了La3+掺杂量对PIN-PZN-PZT四元压电陶瓷微观结构和电学性能的影响。结果表明:引入La3+可以增强压电陶瓷局部结构异质性,进而提升介电弛豫特性并提高压电性能。当La2O3含量为1.5%时,获得了兼具高电致应变(0.23%)和高居里温度(206℃)的压电陶瓷材料。
合成了颗粒状、立方体状、纤维状和片状的BaTiO3粉体,并采用扫描电子显微镜、X射线衍射、傅里叶变换红外光谱、紫外可见吸收光谱对合成粉体的物相、形貌进行表征;比较不同形貌、催化条件下BaTiO3粉体的压电催化活性,并结合有限元分析解释了压电催化活性差异的原因。结果显示,片状形貌下的BaTiO3粉体具有压电催化活性优势,原因在于其产生了高压电势。且当催化剂固含量为2 g·L-1、超声频率为40 kHz、染料质量浓度为5 mg·L-1时具有较优的催化活性,并结合自由基捕获实验揭示了片状BaTiO3压电催化降解罗丹明B (RhB)染料的机制,即超氧自由基和羟基自由基作为主要反应物实现了污染物的降解。
利用水热法合成了一种宽带近红外Na3CrF6荧光粉,研究了其结构、微观形貌和光致发光性能。结果表明,在435 nm激发光的照射下,Na3CrF6荧光粉可发出650~850 nm宽带近红外光,其峰值位于738 nm处,半高宽为95 nm;通过分析光谱数据,发现Cr3+在Na3CrF6荧光粉中的晶体场强度为1.72,处于弱晶体场环境中;298~473 K温度范围内,随着加热温度的升高,Na3CrF6荧光粉的发光强度缓慢下降。
采用高温固相法制备了Sr1-xZrSi2O7∶xDy3+荧光粉,并用X射线衍射仪、扫描电子显微镜和荧光光谱仪对其晶体结构、形貌、光致发光特性和热稳定性进行了研究。结果表明,该荧光粉可以在353 nm的近紫外光激发下获得蓝光(493 nm)和橙红光(581 nm)发射峰,这2个峰分别归属于Dy3+离子的4F9/2→6H15/2和4F9/2→6H13/2能级跃迁。在该荧光粉中,Dy3+的猝灭浓度为0.03,猝灭机制是偶极-偶极相互作用。当温度升高到150℃时,其发光强度仍可以保持室温的83%,具有良好的热稳定性。
本工作研究了镍钴双金属磷化物(Ni-Co-P)在水溶液中的稳定性。结果显示,Ni-Co-P能与H2O反应,发生自腐蚀生成Ni2+、Co2+和PO43-离子,同时产生H2。Ni-Co-P与H2O的自腐蚀反应速率受到镍钴比例影响,Ni-Co-P中的Co含量升高,其在水中的腐蚀速率降低。详细研究了镍、钴投料比(nNi/nCo)为1∶2制备的Ni-Co-P在水中的腐蚀行为,其在水中的腐蚀速率与溶液pH值、氧气含量、光照、温度等因素有关。为了抑制Ni-Co-P (nNi/nCo=1/2)在水溶液中的腐蚀,在其表面包裹一层惰性TiO2保护层,这层TiO2保护层能有效减缓Ni-Co-P在水中的腐蚀,增强其稳定性。
Binary composites (ZIF-67/rGO) were synthesized by one-step precipitation method using cobalt nitrate hexahydrate as metal source, 2-methylimidazole as organic ligand, and reduced graphene oxide (rGO) as carbon carrier. Then Ru3+ was introduced for ion exchange, and the porous Ru-doped Co3O4/rGO (Ru-Co3O4/rGO) composite electrocatalyst was prepared by annealing. The phase structure, morphology, and valence state of the catalyst were analyzed by X-ray powder diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). In 1 mol·L-1 KOH, the oxygen evolution reaction (OER) performance of the catalyst was measured by linear sweep voltammetry, cyclic voltammetry, and chronoamperometry. The results show that the combination of Ru doping and rGO provides a fast channel for collaborative electron transfer. At the same time, rGO as a carbon carrier can improve the electrical conductivity of Ru-Co3O4 particles, and the uniformly dispersed nanoparticles enable the reactants to diffuse freely on the catalyst. The results showed that the electrochemical performance of Ru-Co3O4/rGO was much better than that of Co3O4/rGO, and the overpotential of Ru-Co3O4/rGO was 363.5 mV at the current density of 50 mA·cm-2.
Five cadmium naphthalene-diphosphonates, formulated as [Cd1.5(1,4-ndpaH2)2(4,4′-bpyH)(4,4′-bpy)0.5(H2O)2]2 (1), [Cd(1,4-ndpaH2)(1,4-bib)0.5(H2O)] (2), [Cd(1,4-ndpaH3)2(1,2-dpe)(H2O)]·(1,2-dpe)·7H2O (3), (1,2-bixH)[Cd3(1,4-ndpaH)(1,4-ndpaH2)2(H2O)2] (4), and [Cd(1,4-ndpaH2)(H2O)]·H2O (5), have been synthesized from the self-assembly reactions of 1,4-naphthalenediphosphonic acid (1,4-ndpaH4) with Cd(NO3)2·4H2O by introducing auxiliary ligands with variation of rigidity, such as 4,4′-bipyridine (4,4′-bpy), 1,4-bis(1-imidazolyl)benzene (1,4-bib), 1,2-di(4-pyridyl)ethylene (1,2-dpe), 1,3-di(4-pyridyl)propane (1,3-dpp), and bis(imidazol-1-ylmethyl)benzene (1,2-bix), respectively. Structure resolution by single-crystal X-ray diffraction reveals that compound 1 possesses a layered framework, in which the {Cd3(PO2)2} trimers made up of corner-sharing two {CdO4N2} and one {CdO6} octahedra are connected by phosphonate groups, forming a ribbon, which are cross-linked by 4,4′-bipy ligands, forming a 2D layer. Compound 2 shows a 3D open-framework structure, where chains of corner-sharing {CdO4N} trigonal bipyramids and {PO3C} tetrahedra are cross-linked by 1,4-bib and/or phosphonate groups. A 1D ladder-like chain structure is found in compound 3, where the ladder-like chains made up of corner-sharing {CdO5N} octahedra and {PO3C} tetrahedra are connected by 1,4-ndpaH22-. Both compounds 4 and 5 obtained by the introduction of flexible ligands during the synthesis show a 2D layered structure, which is formed by ligand crosslinking double metal chains. Interestingly, In 4, flexible 1,2-bix was singly protonated, as guest molecules, filled between layer and layer, while flexible ligand 1,3-dpp is absent in 5. Photophysical measurements indicate that compounds 1-5 show ligand-centered emissions.
A new cobalt(Ⅱ)-radical complex: [Co(im4-py)2(PNB)2] (im4-py=2-(4'-pyridyl)-4,4,5,5-tetramethylimidazole-1-oxyl, HPNB=p-nitrobenzoic acid) has been synthesized and characterized by X-ray diffraction analysis, elemental analysis, IR, and magnetic properties. X-ray diffraction analysis shows that the complex exists as mononuclear molecules and Co(Ⅱ)ion is four-coordinated with two radicals and two PNB- ligands. The magnetic susceptibility study indicates the complex exhibits weak ferromagnetic interactions between cobalt(Ⅱ) and im4-py radical. The magnetic property is explained by the magnetic and structure exchange mechanism.
Porous spherical MnCo2S4 was synthesized by a simple solvothermal method. Thanks to the well-designed bimetallic composition and the unique porous spherical structure, the MnCo2S4 electrode exhibited an exceptional specific capacitance of 190.8 mAh·g-1 at 1 A·g-1, greatly higher than the corresponding monometallic sulfides MnS (31.7 mAh·g-1) and Co3S4 (86.7 mAh·g-1). Impressively, the as assembled MnCo2S4||porous carbon (PC) hybrid supercapacitor (HSC), showed an outstanding energy density of 76.88 Wh·kg-1 at a power density of 374.5 W·kg-1, remarkable cyclic performance with a capacity retention of 86.8% after 10 000 charge-discharge cycles at 5 A·g-1, and excellent Coulombic efficiency of 99.7%.