Influence of different distributions of Ca-mineral in coal on trimodal particulate matter formation during combustion
- Corresponding author: YAO Hong, hyao@mail.hust.edu.cn
Citation:
ZHANG Ping-an, YUAN Jing, YU Dun-xi, LUO Guang-qian, YAO Hong. Influence of different distributions of Ca-mineral in coal on trimodal particulate matter formation during combustion[J]. Journal of Fuel Chemistry and Technology,
;2016, 44(3): 273-278.
YAO Q, LI S Q, XU H W, ZHUO J K, SONG Q. Studies on formation and control of combustion particulate matter in China: A review[J]. Energy, 2009,34(9):1296-1309. doi: 10.1016/j.energy.2009.03.013
LINAK W P, MILLER C A, SEAMES W S, WENDT J O L, ISHINOMORI T, ENDO Y, MIYAMAE S. On trimodal particle size distributions in fly ash from pulverized-coal combustion[J]. Proc Combust Inst, 2002,29(1):441-447. doi: 10.1016/S1540-7489(02)80058-X
SEAMES W S. An initial study of the fine fragmentation fly ash particle mode generated during pulverized coal combustion[J]. Fuel Process Technol, 2003,81(2):109-125. doi: 10.1016/S0378-3820(03)00006-7
YU D X, XU M H, YAO H, SUI J C, LIU X W, YU Y, CAO Q. Use of elemental size distributions in identifying particle formation modes[J]. Proc Combust Inst, 2007,31(6):1921-1928.
QUANN R J. Ash vaporization under simulated pulverized coal combustion conditions[D]. Cambridge: Massachusetts Institute of Technology, 1982.
YU D X, XU M H, YAO H, LIU X W, ZHOU K, LI L, WEN C. Mechanisms of the central mode particle formation during pulverized coal combustion[J]. Proc Combust Inst, 2009,32(1):2075-2082.
KANG S G. Fundamental studies of mineral matter transformation during pulverized coal combustion: Residual ash formation[D]. Cambridge: Massachusetts Institute of Technology, 1991.
HELBLE J J. A model for the air emissions of trace metallic elements from coal combustors equipped with electrostatic precipitators[J]. Fuel Process Technol, 2000,63(2/3):125-147.
XU Ming-hou, YU Dun-xi, LIU Xiao-wei. Formation and Emission of Particulate Matter During Coal Combustion[M]. Beijing: Science Press, 2009.
MCLENNAN A R, BRYANT G W, BAILEY C W, STANMORE B R, WALL T F. An experimental comparison of the ash formed from coals containing pyrite and siderite mineral in oxidizing and reducing conditions[J]. Energy Fuels, 2000,14(2):308-315. doi: 10.1021/ef990092h
YU Dun-xi, XU Ming-hou, YAO Hong, LIU Xiao-wei, ZHANG Lian, WANG Qun-ying, NINOMIYA Y. Study on coal mineral properties and their transformation behavior during combustion by CCSEM[J]. J Eng Thermophys, 2007,28(5):875-878.
ZHAN Zhong-hua. Effect of mineral characteristics on particulate matter emission during pulverized coal combustion[D]. Wuhan: Huazhong University of Science and Technology, 2011.
WANG Q Y, ZHANG L A, SATO A, NINOMIYA Y, YAMASHITA T. Interactions among inherent minerals during coal combustion and their impacts on the emission of PM10. 1. Emission of micrometer-sized particles[J]. Energy Fuels, 2007,21(2):756-765. doi: 10.1021/ef0603075
SENIOR C L, FLAGAN R C. Synthetic chars for the study of ash vaporization[C]//Twentieth symposium (international) on combustion. The Combustion Institute, 1984: 921-929.
ARENILLAS A, PEVIDA C, RUBIERA F, PIS J J. Comparison between the reactivity of coal and synthetic coal models[J]. Fuel, 2003,82(3):2001-2006.
MO Xin. Research on transformation of pyrite in coal under O2/CO2 combustion conditions[D]. Wuhan: Huazhong University of Science and Technology, 2013.
NINOMIYA Y, WANG Q Y, XU SY, TERAMAE T, AWAYA I. Evaluation of a Mg-based additive for particulate matter (PM2.5) reduction during pulverized coal combustion[J]. Energy Fuels, 2010,24(1):199-204. doi: 10.1021/ef900556s
ZHANG Hong, HU Guang-zhou, FAN Jia-xin, PU Wen-xiu, MO Yan-xue, HA Si, LI Ying. Study on the distribution of mineral in pulverized coals[J]. J Eng Thermophys, 2008,29(7):1231-1235.
ZHANG P A, YU D X, LUO G Q, YAO H. Temperature effect on central mode particulate matter formation in combustion of coals with different mineral compositions[J]. Energy Fuels, 2015,29(8):5245-5252. doi: 10.1021/acs.energyfuels.5b00784
TERAMAE T, TAKARADA T. Fine ash formation during pulverized coal combustion[J]. Energy Fuels, 2009,23(3):2018-2024.
YU D X, XU M H, YAO H, LIU X W, ZHOU K. A new method for identifying the modes of particulate matter from pulverized coal combustion[J]. Powder Technol, 2008,183(1):105-114. doi: 10.1016/j.powtec.2007.11.011
XIAO Hai-ping, ZHOU Jun-hu, LIU Jian-zhong. Laboratory study on the high-temperature capture of SO2 and NOx by calcium magnesium acetate[J]. Proc Chin Soc Electr Eng, 2007,27(35):23-27.
LIU Hong-tao, HAN Kui-hua, LU Chun-mei, LI Hui. Experimental study on reburning/advanced reburning performance of limestone modified by wood vinegar for NO reduction under O2/CO2 atmosphere[J]. J Fuel Chem Technol, 2013,41(2):228-234. doi: 10.1016/S1872-5813(13)60015-8
GAO X P, RAHIM M U, CHEN X X, WU H W. Significant contribution of organically-bound Mg, Ca and Fe to inorganic PM10 emission during the combustion of pulverized Victorian brown coal[J]. Fuel, 2014,117(1):825-832.
QIU J R, LI F, ZHENG Y, ZHENG C G, ZHOU H C. The influences of mineral behaviour on blended coal ash fusion characteristics[J]. Fuel, 1999,78(8):963-969. doi: 10.1016/S0016-2361(99)00005-8
Tiancheng Yang , Yang Yang , Chunhua Qu , Rui Chu , Yue Xia . Wandering through the Kingdom of Chinese Mineral Medicines. University Chemistry, 2024, 39(9): 94-101. doi: 10.12461/PKU.DXHX202403015
Jiangjuan Shao , Xuan Li , Jingdan Weng , Xiaolei Chen , Fei Xu , Yulu Ma , Nianguang Li , Shizhong Zheng . Improvement in the Experimental Teaching Design of Physical and Chemical Identification and Quantification of Mineral Drugs. University Chemistry, 2024, 39(10): 137-142. doi: 10.3866/PKU.DXHX202312079
Zian Lin , Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066
Houzhen Xiao , Mingyu Wang , Yong Liu , Bangsheng Lao , Lingbin Lu , Minghuai Yu . Course Ideological and Political Design of Combustion Heat Measurement Experiment. University Chemistry, 2024, 39(2): 7-13. doi: 10.3866/PKU.DXHX202310011
Shuyong Zhang , Yaxian Zhu , Wenqing Zhang , Yuzhi Wang , Jing Lu . Ideological and Political Design of Combustion Heat Measurement Experiment: Determination of Heat Value of Agricultural and Forestry Wastes. University Chemistry, 2024, 39(2): 1-6. doi: 10.3866/PKU.DXHX202303026
Ruifeng CHEN , Chao XU , Jianting JIANG , Tianshe YANG . Gold nanorod/zinc oxide/mesoporous silica nanoplatform: A triple-modal platform for synergistic anticancer therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2272-2282. doi: 10.11862/CJIC.20250117
Weigang Zhu , Yun Tian , Zhicheng Zhang , Hongling Gao . Reform Exploration of Student Performance Assessment in Inorganic Chemistry Experimental Courses. University Chemistry, 2024, 39(10): 203-209. doi: 10.12461/PKU.DXHX202404114
Lei Qin , Kai Guo . Application of Generative Artificial Intelligence in the Simulation of Acid-Base Titration Images. University Chemistry, 2025, 40(9): 11-18. doi: 10.12461/PKU.DXHX202408123
Shuangshuang Long , Jingjing Liu , Xiaojuan Wang . Exploring the Application of Generative AI in Analytical Chemistry Education. University Chemistry, 2025, 40(9): 25-33. doi: 10.12461/PKU.DXHX202408096
Lingli Wu , Shengbin Lei . Generative AI-Driven Innovative Chemistry Teaching: Current Status and Future Prospects. University Chemistry, 2025, 40(9): 206-219. doi: 10.12461/PKU.DXHX202503069
Ruming Yuan , Laiying Zhang , Xiaoming Xu , Pingping Wu , Gang Fu . Generative Artificial Intelligence Empowering Physical Chemistry Teaching. University Chemistry, 2025, 40(9): 238-244. doi: 10.12461/PKU.DXHX202504069
Hengrui Zhang , Xijun Xu , Xun-Lu Li , Xiangwen Gao . Applications of Generative Artificial Intelligence in Battery Research: Current Status and Prospects. Acta Physico-Chimica Sinica, 2025, 41(10): 100115-0. doi: 10.1016/j.actphy.2025.100115
Yuhang Zhang , Yi Li , Yuehan Cao , Yingjie Shuai , Yu Zhou , Ying Zhou . Regulating the formation type by Ir of intermediates to suppress product overoxidation in photocatalytic methane conversion. Acta Physico-Chimica Sinica, 2026, 42(2): 100173-0. doi: 10.1016/j.actphy.2025.100173
Yadan Luo , Hao Zheng , Xin Li , Fengmin Li , Hua Tang , Xilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020
Chengxin Chen , Hongfei Shi , Xiaoyan Cai , Liang Mao , Zhe Chen . Enhanced bifunctional photocatalytic performances for H2 evolution and HCHO elimination with an S-scheme CoWO4/CdIn2S4 heterojunction. Acta Physico-Chimica Sinica, 2025, 41(12): 100155-0. doi: 10.1016/j.actphy.2025.100155
Xin Zhou , Yiting Huo , Songyu Yang , Bowen He , Xiaojing Wang , Zhen Wu , Jianjun Zhang . Understanding the effect of pH on protonated COF during photocatalytic H2O2 production by femtosecond transient absorption spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(12): 100160-0. doi: 10.1016/j.actphy.2025.100160
Ziliang KANG , Jiamin ZHANG , Hong AN , Xiaohua LIU , Yang CHEN , Jinping LI , Libo LI . Preparation and water adsorption properties of CaCl2@MOF-808 in-situ composite moulded particles. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2133-2140. doi: 10.11862/CJIC.20240282
Yongjie ZHANG , Bintong HUANG , Yueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247
Zhuo WANG , Xiaotong LI , Zhipeng HU , Junqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223