Citation: HUANG Chun-jie, CHEN Shao-yun, FEI Xiao-yao, LIU Dai, CHEN Jian, ZHANG Yong-chun. Preparation of nanometer CuO-ZnO-ZrO2 catalysts through citrate-gel process and their catalytic properties for methanol synthesis from CO2[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(3): 375-384. shu

Preparation of nanometer CuO-ZnO-ZrO2 catalysts through citrate-gel process and their catalytic properties for methanol synthesis from CO2

  • Corresponding author: ZHANG Yong-chun, zalidy5518@vip.sina.com
  • Received Date: 20 October 2015
    Revised Date: 30 December 2015

Figures(8)

  • CuO-ZnO-ZrO2(CZZ) nanocatalysts were successfully prepared by citrate-gel method. The catalysts and their precursors were characterized by X-ray photoelectron spectroscopy (XPS), N2 adsorption specific surface area measurement (BET), X-ray diffraction (XRD), H2-temperature-programmed reduction (H2-TPR), H2 and CO2-temperature-programmed desorption (H2 and CO2-TPD) and thermogravimetric analysis (TG-DTA). Drying time of the wet gel and the dosage of citric acid were systematicly studied, while combustion method was also conducted with the comparison of those obtained catalysts. Results show that, prolonged drying process can effectively prevent particle spattering during calcination, benefit the dispersion of different components in the catalyst, and improve the adsorption ability of catalyst for H2 and CO2. Sample CZZ-48h, which was dried at 112℃, 48h, maintained a much higher BET specific surface area than that prepared by combustion method. The CuO-ZnO-ZrO2 catalyst, in which 100% of stoichiometric amount of citric acid was added, exhibited an optimum catalytic behavior with a space-time-yield of methanol 109.4g·h-1·kg-1 under the condition of 240℃, 2.6 MPa, 3600h-1, H2/CO2=3. The detriment of the catalytic performance excessive amounts of citric acid is ascribed to decline dispersion of the catalyst component, and decomposition residual covering on the surface active species of the catalyst.
  • 加载中
    1. [1]

      OLAH G A, PRAKASH G K S, GOEPPERT A. Anthropogenic chemical carbon cycle for a sustainable future[J]. J Am Chem Soc, 2011,133(33):12881-12898. doi: 10.1021/ja202642y

    2. [2]

      OLAH G A. Towards oil independence through renewable methanol chemistry[J]. AngewChemInt Ed, 2013,52(1):104-107.

    3. [3]

      MEITZNER G, IGLESIA E. New insights into methanol synthesis catalysts from X-ray absorption spectroscopy[J]. Catal Today, 1999,53(3):433-441. doi: 10.1016/S0920-5861(99)00135-2

    4. [4]

      CONG Yu, BAO Xin-he, ZHANG Tao, SUN Xiao-ying, LIANG Dong-bai, TIAN Jin-zhong, HUANG Ning-biao. TPSR and TPD studies of ultrafine Cu-ZnO-ZrO2 catalysts for methanol synthesis[J]. J Fuel Chem Technol, 2000,28(3):238-243.  

    5. [5]

      SUN Q, LIU C W, PAN W, ZHU Q M, DENG J F. In situ IR studies on the mechanism of methanol synthesis over an ultrafine Cu/ZnO/Al2O3 catalyst[J]. ApplCatal A: Gen, 1998,171:301-308.

    6. [6]

      CONG Yu, TIAN Jin-zhong, HUANG Ning-biao, XU Zhang-hai, ZHANG Tao, SUN Xiao-ying, GUAN Wen, LIANG Dong-bai. Preparation of ultrafine Cu-ZnO-ZrO2catalysts and CO2 hydrogenation performance[J]. Chin J Catal, 2000,21(3):247-250.  

    7. [7]

      ARENA F, BARBERA K, ITALIANO G, BONURAG , SPADARO L, FRUSTERI F. Synthesis, characterization and activity pattern of Cu-ZnO/ZrO2 catalystsin the hydrogenation of carbon dioxide to methanol[J]. J Catal, 2007,249(2):185-194. doi: 10.1016/j.jcat.2007.04.003

    8. [8]

      LI C M, YUAN X D, FUJIMOTO K. Development of highly stable catalyst for methanol synthesis from carbon dioxide[J]. Appl Catal A: Gen, 2014,469:306-311. doi: 10.1016/j.apcata.2013.10.010

    9. [9]

      GAO P, LI F, XIAO F K, ZHAO N, WEI W, ZHONG L S, SUN Y H. Effect of hydrotalcite-containing precursors on the performance of Cu/Zn/Al/Zr catalysts for CO2 hydrogenation: Introduction of Cu2+ at different formation stages of precursors[J]. Catal Today, 2012,194(1):9-15. doi: 10.1016/j.cattod.2012.06.012

    10. [10]

      YANG R Q, YU X C, ZHANG Y, LI W Z, TSUBAKI N. A new method of low-temperature methanol synthesis on Cu/ZnO/Al2O3 catalysts from CO/CO2/H2[J]. Fuel, 2008,87(4/5):443-450.

    11. [11]

      GUO X M, MAO D S, WANG S, WU G S, LU G Z. Combustion synthesis of CuO-ZnO-ZrO2 catalysts for the hydrogenation of carbon dioxide to methanol[J]. Catal Commun, 2009,10(13):1661-1664. doi: 10.1016/j.catcom.2009.05.004

    12. [12]

      GUO Xiao-ming, MAO Dong-sen, LU Guan-zhong, WANG Song. Preparation of CuO-ZnO-ZrO2 by citric acid combustion method and its catalytic property for methanol synthesis from CO2 hydrogenation[J]. Acta Phys-Chem Sin, 2012,28(1):170-176.  

    13. [13]

      SHI L, YANG R Q, TAO K, YONEYAMA Y, TAN Y S, TSUBAKI N. Surface impregnation combustion method to prepare nanostructured metallic catalysts without further reduction: As-burnt Cu-ZnO/SiO2 catalyst for low-temperature methanol synthesis[J]. Catal Today, 2012,185(1):54-60. doi: 10.1016/j.cattod.2011.10.015

    14. [14]

      ZHU Yi-qing, WEN Yi, LAI Li-fang, ZONG Feng-qi, WANG Jian. Characterization and catalytic activity evaluation of ultrafine CuO/ZnO/TiO2-SiO2 catalysts for CO2 hydrogenation to methanol[J]. J Fuel Chem Technol, 2004,32(4):486-491.  

    15. [15]

      JUN K W, SHEN W J, RAO KS R, LEE K W. Residual sodium effect on the catalytic activity of Cu/ZnO/Al2O3 in methanol synthesis from CO2 hydrogenation[J]. Appl Catal A: Gen, 1998,174:231-238. doi: 10.1016/S0926-860X(98)00195-1

    16. [16]

      KONG Xiu-qin, TANG Xing-jiang, XU Shan, WANG Xiao-lai. Preparation of CuO-ZnO/Al2O3 by sol-gel auto-combustion method and its catalytic property for methanol synthesis from CO2 hydrogenation[J]. J Mol Catal, 2013,27(2):159-165.

    17. [17]

      LIN Jian-xin, WANG Zi-qing, ZHANG Liu-ming, NI Jun, WANG Rong, WEI Ke-mei. Ammonia synthesis over ruthenium catalysts using barium-doped zirconia as supports prepared by citric acid method[J]. Chin J Catal, 2012,33(7):1075-1079.  

    18. [18]

      JING Mao-xiang, SHEN Xiang-qian, SHEN Yu-jun. Preparation of nanometer nickel oxide by the citrate-gel process[J]. J Inorg Mater, 2004,19(2):289-294.  

    19. [19]

      BONURA G, CORDARO M, CANNILLA C, ARENA F, FRUSTERI F. The changing nature of the active site of Cu-Zn-Zr catalysts for the CO2 hydrogenation reaction to methanol[J]. Appl Catal B: Environ, 2014,52-153:152-161.  

    20. [20]

      KARELOVIC A, BARGIBANT A, FERNÁNDEZ C, RUIZ P. Effect of the structural and morphological properties of Cu/ZnO catalysts prepared by citrate method on their activity toward methanol synthesis from CO2 and H2 under mild reaction conditions[J]. Catal Today, 2012,197(1):109-118. doi: 10.1016/j.cattod.2012.07.029

    21. [21]

      ZHANG Lu-xiang, ZHANG Yong-chun, CHEN Shao-yun. Effect of promoter TiO2 on the performance of CuO-ZnO-Al2O3 catalyst for CO2 catalytic hydrogenation to methanol[J]. J Fuel Chem Technol, 2011,39(12):912-917. doi: 10.1016/S1872-5813(12)60002-4 

    22. [22]

      ZHANG Y P, FEI J H, YU Y M, ZHENG X M. Methanol synthesis from CO2 hydrogenation over Cu based catalyst supported on zirconia modified Al2O3[J]. Energy Convers Manage, 2006,47(18/19):3360-3367.

    23. [23]

      DONG X, ZHANG H B, LIN G D, YUAN Y Z, TSAI K R. Highly active CNT-promoted Cu-ZnO-Al2O3 catalyst for methanol synthesis from H2/CO/CO2[J]. Catal Lett, 2003,85(3):237-246.

    24. [24]

      LI Ji-tao, ZHANG Wei-de, CHEN Ming-dan, QU Ze-tang. TPD and TPSR study of CO2 adsorption on Cu-based catalysts[J]. J Nat Gas Chem, 1998,23(5):14-17.

    25. [25]

      ARENA F, ITALIANO G, BARBERA K, BORDIGA S, BONURA G, SPADARO L, FRUSTERI F. Solid-state interactions, adsorption sites and functionality of Cu-ZnO/ZrO2 catalysts in the CO2 hydrogenation to CH3OH[J]. Appl Catal A: Gen, 2008,350:16-23. doi: 10.1016/j.apcata.2008.07.028

    26. [26]

      ZHUANG Hao-ren, LI Cheng-en, YIN Zhi-wen. Pyrolysis of PLZT citrate precursor[J]. J Inorg Mater, 1988,3(1):27-31.  

    27. [27]

      SHI L, ZENG C Y, JIN Y Z, WANG T J, TSUBAKI N. A sol-gel auto-combustion method to prepare Cu/ZnO catalysts for low-temperature methanol synthesis[J]. Catal Sci Technol, 2012,2:2569-2577. doi: 10.1039/c2cy20423a

    28. [28]

      XU Zheng, MAO Li-qun, QIAN Zai-hu, SHENG Shi-shan, XIONG Guo-xing. Photoelectron spectroscopic study of CuO/ZnO/ZrO2 catalyst in low pressure methanol synthesis from CO2 and H2[J]. J Fuel Chem Technol, 1992,20(3):272-277.  

    29. [29]

      BIESINGER M C, LAU L W M, GERSON A R, SMART R S C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn[J]. Appl Surf Sci, 2010,257(3):887-898. doi: 10.1016/j.apsusc.2010.07.086

  • 加载中
    1. [1]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    2. [2]

      Tong WUYi ZHONGWeimin ZHAOHong XUZhiping MAOLinping ZHANG . BiOBr/NH2-MIL-101(Fe): Preparation and performance on photocatalytic reduction of CO2. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1765-1775. doi: 10.11862/CJIC.20250103

    3. [3]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    4. [4]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    5. [5]

      Qinhui GuanYuhao GuoNa LiJing LiTingjiang Yan . Molecular sieve-mediated indium oxide catalysts for enhancing photocatalytic CO2 hydrogenation. Acta Physico-Chimica Sinica, 2025, 41(11): 100133-0. doi: 10.1016/j.actphy.2025.100133

    6. [6]

      Yongqing XuYuyao YangMengna WuXiaoxiao YangXuan BieShiyu ZhangQinghai LiYanguo ZhangChenwei ZhangRobert E. PrzekopBogna SztorchDariusz BrzakalskiHui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003

    7. [7]

      Xiaorui ChenXuan LuoTongming SuXinling XieLiuyun ChenYuejing BinZuzeng QinHongbing Ji . Ga-doped Cu/γ-Al2O3 bifunctional interface sites promote the direct hydrogenation of CO2 to DME. Acta Physico-Chimica Sinica, 2025, 41(10): 100126-0. doi: 10.1016/j.actphy.2025.100126

    8. [8]

      Shi-Yu LuWenzhao DouJun ZhangLing WangChunjie WuHuan YiRong WangMeng Jin . Amorphous-Crystalline Interfaces Coupling of CrS/CoS2 Few-Layer Heterojunction with Optimized Crystallinity Boosted for Water-Splitting and Methanol-Assisted Energy-Saving Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(8): 2308024-0. doi: 10.3866/PKU.WHXB202308024

    9. [9]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    10. [10]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    11. [11]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    12. [12]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    13. [13]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    14. [14]

      Xianghai SongXiaoying LiuZhixiang RenXiang LiuMei WangYuanfeng WuWeiqiang ZhouZhi ZhuPengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-0. doi: 10.1016/j.actphy.2025.100055

    15. [15]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    16. [16]

      Yanzhe WANGXiaoming GUOQiangsheng GUOLiang LIBin LUPeihang YE . Effect of Ce introduction on the low-temperature performance of NiAl catalyst for CO2 methanation. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2218-2228. doi: 10.11862/CJIC.20250202

    17. [17]

      Honghong ZhangZhen WeiDerek HaoLin JingYuxi LiuHongxing DaiWeiqin WeiJiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073

    18. [18]

      Yuejiao AnWenxuan LiuYanfeng ZhangJianjun ZhangZhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-0. doi: 10.3866/PKU.WHXB202407021

    19. [19]

      Zhijie ZhangXun LiHuiling TangJunhao WuChunxia YaoKui Li . Cs2CuBr4 perovskite quantum dots confined in mesoporous CuO framework as a p-n type S-scheme heterojunction for efficient CO2 photoconversion. Chinese Chemical Letters, 2024, 35(11): 109700-. doi: 10.1016/j.cclet.2024.109700

    20. [20]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

Metrics
  • PDF Downloads(10)
  • Abstract views(2290)
  • HTML views(264)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return