Citation: YONG Qi-run, GONG Ben-gen, ZHAO Yong-chun, ZHANG Jun-ying. Carbothermal reduction of Si-Al-Fe-Ca quaternary system in a high-silica coal[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(11): 1296-1302. shu

Carbothermal reduction of Si-Al-Fe-Ca quaternary system in a high-silica coal

  • Corresponding author: ZHANG Jun-ying, jyzhang@hust.edu.cn
  • Received Date: 31 May 2017
    Revised Date: 18 July 2017

    Fund Project: the National Natural Science Foundation of China 41672148the National Natural Science Foundation of China U1510201The project was supported by the National Natural Science Foundation of China(41672148, U1510201)

Figures(6)

  • During coal pyrolysis and gasification, the minerals in coal undergo various transformations, which affects coal conversion and characteristics of coal ash obviously. Carbothermal reduction of Si-Al-Fe-Ca quaternary system in high-silica coal under different temperature was investigated. Composition of products obtained was analyzed by X-ray diffraction (XRD) and field emission scanning electron microscope-energy dispersive spectrometer (FESEM-EDS) technology. The results show that Fe2O3 plays a positive role in carbothermal reaction of silicon-bearing minerals, which could effectively improve activity of Si. On the contrary, CaO reacts with Al2O3 and SiO2 to form dense Ca-Al-Si eutectic, mainly CaAl2Si2O8, at lower temperature, covering surface of the reactant, which hinders the carbothermal reaction of silicon-containing minerals. With increasing temperature, CaAl2Si2O8 reacts with graphite to generate SiC, CaAl4O7 and CaSiO3. The related thermodynamic calculations are in accordance with the experiment results.
  • 加载中
    1. [1]

      BAI J, LI W, LI C, BAI Z, LI B. Influences of minerals transformation on the reactivity of high temperature char gasification[J]. Fuel Process Technol, 2010,91(4SI):404-409.  

    2. [2]

      BAI Jin, LI Wen, LI Bao-qing. Mineral behavior in coal under reducing atmosphere at high temperature[J]. J Fuel Chem Technol, 2006,34(3):292-297.  

    3. [3]

      BAI Jin, LI Wen, BAI Zong-qing, LI Bao-qing. Influences of mineral matter on high temperature gasification of coal char[J]. J Fuel Chem Technol, 2009,37(2):134-138.  

    4. [4]

      BAI Jin, LI Wen, BAI Zong-qing, LI Bao-qing. Transformation of mineral matters in Yanzhou coal ash at high temperature[J]. J China U Min Technol, 2008(3):369-372.  

    5. [5]

      MA Z, BAI J, WEN X, LI X, SHI Y, BAI Z, KONG L, GUO Z, YAN J, LI W. Mineral transformation in char and its effect on coal char gasification reactivity at high temperatures Part 3:Carbon thermal reaction[J]. Energy Fuels, 2014,28(5):3066-3073. doi: 10.1021/ef5004792

    6. [6]

      MA Z, BAI J, LI W, BAI Z, KONG L. Mineral transformation in char and its effect on coal char gasification reactivity at high temperatures, Part 1:Mineral transformation in char[J]. Energy Fuels, 2013,27(8):4545-4554. doi: 10.1021/ef4010626

    7. [7]

      MA Z, BAI J, BAI Z, KONG L, GUO Z, YAN J, LI W. Mineral transformation in char and its effect on coal char gasification reactivity at high temperatures, Part 2:char gasification[J]. Energy Fuels, 2014,28(3):1846-1853. doi: 10.1021/ef402382m

    8. [8]

      WANG J, ISHIDA R, TAKARADA T. Carbothermal reactions of quartz and kaolinite with coal char[J]. Energy Fuel, 2000,14(5):1108-1114. doi: 10.1021/ef000084x

    9. [9]

      LI G, LIU Q, LIU Z. CaC2 Production from Pulverized Coke and CaO at Low Temperatures-Influence of Minerals in Coal-Derived Coke[J]. Ind Eng Chem Res, 2012,51(33):10748-10754. doi: 10.1021/ie3006726

    10. [10]

      WANG J, MORISHITA K, TAKARADA T. High-temperature interactions between coal char and mixtures of calcium oxide, quartz and kaolinite[J]. Energy Fuels, 2001,15(5):1145-1152. doi: 10.1021/ef0100092

    11. [11]

      WU S, ZHANG X, GU J, WU Y, GAO J. Interactions between carbon and metal oxides and their effects on the Carbon/CO2 reactivity at high temperatures[J]. Energy Fuels, 2007,21(4):1827-1831. doi: 10.1021/ef0605551

    12. [12]

      ZHANG Ming-liang. Influence of the SiC generation on the submerged arc furnace smelting process[D]. Baotou:Inner Mongolia University of Science and Technology, 2007. 

    13. [13]

      WU X, ZHANG Z, CHEN Y, ZHOU T, FAN J, PIAO G, KOBAYASHI N, MORI S, ITAYA Y. Main mineral melting behavior and mineral reaction mechanism at molecular level of blended coal ash under gasification condition[J]. Fuel Process Technol, 2010,91(11):1591-1600. doi: 10.1016/j.fuproc.2010.06.007

    14. [14]

      MA Zhi-bin, BAI Zong-qing, BAI Jin, LI Wen, GUO Zhen-xing. Evolution of coal ash with high Si/Al ratio under reducing atmosphere at high temperature[J]. J Fuel Chem Technol, 2012,40(3):279-285.  

    15. [15]

      WU Jun. The study on the characteristics of minerals in high silicon coal and the ash melting characteristics[D].Wuhan:Huazhong University of Science and Technology, 2012.

    16. [16]

      YAN T, BAI J, KONG L, BAI Z, LI W, XU J. Effect of SiO2/Al2O3 on fusion behavior of coal ash at high temperature[J]. Fuel, 2017,193:275-283. doi: 10.1016/j.fuel.2016.12.073

    17. [17]

      YIN Y, MA B, LI S, ZHANG B, YU J, ZHANG Z, LI G. Synthesis of Al2O3-SiC composite powders from coal ash in NaCl-KCl molten salts medium[J]. Ceram Int, 2016,42(16):19225-19230. doi: 10.1016/j.ceramint.2016.09.087

    18. [18]

      SUN Jun-min. A study of the mineral composition of coal combustion residues[J]. Acta Mineralogica Sini, 2001(1):14-18.  

    19. [19]

      WANG Yang, LI Hui, WANG Dong-xu, DONG Zhang-qing, LU Qiang, LI Wen-yan. Relationship betweencoal ash fusibility and ash composition in terms of mineral changes[J]. J Fuel Chem Technol, 2016,44(9):1034-1042.  

    20. [20]

      WU Xian-xi. Activity calculation of each component in Al-Si-Fe ternary system[J]. Chin J Nonferrous Met, 1999(3):627-630.  

    21. [21]

      YE Da-lun, HU Jian-hua. Handbook of Thermodynamic Data of Inorganic[M]. 2nd ed. Beijing:Metallurgical Industry Press, 1981.

    22. [22]

      LI Da-zhen. The Basis of Chemical Thermodynamics[M]. Beijing:Beijing Normal University Pubulishing Group, 1982.

    23. [23]

      LI Zi-yong, WU Chun-han, YU Qing-chun, LU Yong, YANG Bin, KE Wei-guo, SHEN Ran. Phase transformation of carbothermal reduction coal fly ash[J]. J China Coal Soc, 2016,41(3):769-775.  

  • 加载中
    1. [1]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    2. [2]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    3. [3]

      Hongxia Yan Rui Wu Weixu Feng Yan Zhao Yi Yan . Innovation Inspired by Classical Chemistry: Luminescent Hyperbranched Polysiloxanes. University Chemistry, 2025, 40(4): 154-159. doi: 10.12461/PKU.DXHX202409010

    4. [4]

      Haiyu ZhuZhuoqun WenWen XiongXingzhan WeiZhi Wang . 二维半金属/硅异质结中肖特基势垒高度的准确高效预测. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-0. doi: 10.1016/j.actphy.2025.100078

    5. [5]

      Jingshuo ZhangYue ZhaiZiyun ZhaoJiaxing HeWei WeiJing XiaoShichao WuQuan-Hong Yang . Research Progress of Functional Binders in Silicon-Based Anodes for Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306006-0. doi: 10.3866/PKU.WHXB202306006

    6. [6]

      Jiashuang Lu Xiaoyang Xu Youqing He Mingyue Wu Ruixin Shi Wenfang Yu Hang Lu Ji Liu Qingzeng Zhu . 生命健康中的有机硅高分子. University Chemistry, 2025, 40(8): 169-180. doi: 10.12461/PKU.DXHX202409143

    7. [7]

      Yerong Chen Bingbin Yang Xinglei He Yuqi Lin Keyin Ye . Enzyme-Directed Evolution Enables Bioconversion of Organosilicon Compounds. University Chemistry, 2025, 40(10): 121-129. doi: 10.12461/PKU.DXHX202411054

    8. [8]

      Wenke ZHENGCe LIUWei CHENHongshan KEFanlong ZENGYibo LEIAnyang LIWenyuan WANG . Synthesis and bonding analysis of low-coordinate Fe and Cr complexes with ultra-bulky silylamino groups. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1285-1293. doi: 10.11862/CJIC.20250095

    9. [9]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    10. [10]

      Tiancheng Yang Yang Yang Chunhua Qu Rui Chu Yue Xia . Wandering through the Kingdom of Chinese Mineral Medicines. University Chemistry, 2024, 39(9): 94-101. doi: 10.12461/PKU.DXHX202403015

    11. [11]

      Zihan ChengKai JiangJun JiangHenggang WangHengwei Lin . Achieving thermal-stimulus-responsive dynamic afterglow from carbon dots by singlet-triplet energy gap engineering through covalent fixation. Acta Physico-Chimica Sinica, 2026, 42(2): 100169-0. doi: 10.1016/j.actphy.2025.100169

    12. [12]

      Chenyue HuangHongfei ZhengNing QinCanpei WangLiguang WangJun Lu . Single-Crystal Nickel-Rich Cathode Materials: Challenges and Strategies. Acta Physico-Chimica Sinica, 2024, 40(9): 2308051-0. doi: 10.3866/PKU.WHXB202308051

    13. [13]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    14. [14]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    15. [15]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    16. [16]

      Tong WANGXuefang ZHUQi GAOHongbo ZHANGChao RENLixia GE . Luminescence and thermal stability of Tb3+-Eu3+ doped glass-ceramics containing Na8.12Y1.293Si6O18 crystal phase. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2237-2250. doi: 10.11862/CJIC.20250137

    17. [17]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    18. [18]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    19. [19]

      Wuxin BaiQianqian ZhouZhenjie LuYe SongYongsheng Fu . Co-Ni Bimetallic Zeolitic Imidazolate Frameworks Supported on Carbon Cloth as Free-Standing Electrode for Highly Efficient Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305041-0. doi: 10.3866/PKU.WHXB202305041

    20. [20]

      Chen PuDaijie DengHenan LiLi Xu . Fe0.64Ni0.36@Fe3NiN Core-Shell Nanostructure Encapsulated in N-Doped Carbon Nanotubes for Rechargeable Zinc-Air Batteries with Ultralong Cycle Stability. Acta Physico-Chimica Sinica, 2024, 40(2): 2304021-0. doi: 10.3866/PKU.WHXB202304021

Metrics
  • PDF Downloads(0)
  • Abstract views(1863)
  • HTML views(185)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return