Citation: LI Wen-ju, GONG Ben-gen, ZHANG Jun-ying. Study on the mineral transformation and heavy metal distribution during high-silicon coal combustion[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(12): 1488-1497. shu

Study on the mineral transformation and heavy metal distribution during high-silicon coal combustion

  • Corresponding author: ZHANG Jun-ying, jyzhang@hust.edu.cn
  • Received Date: 9 September 2020
    Revised Date: 13 October 2020

    Fund Project: Key Scientific Research Projects of Colleges and Universities in Henan Province 20B610007the National Key Research and Development Program of China 2017YFB0603101National Natural Science Foundation of China 41672148Soft Science Project of Henan Science and Technology Department 202400410295The project was supported by the National Key Research and Development Program of China (2017YFB0603101), National Natural Science Foundation of China (41672148), Soft Science Project of Henan Science and Technology Department (202400410295) and Key Scientific Research Projects of Colleges and Universities in Henan Province (20B610007)

Figures(8)

  • The high-silicon coal in Xuanwei area of Yunnan is selected to study the transformation behavior of minerals and the distribution and enrichment of heavy metals during the combustion process. The minerals in high-silicon coal are mainly composed of quartz, kaolinite, pyrite and anatase. The mullite in fly ash may come from the transformation of quartz and kaolinite in coal; the quartz in fly ash mainly comes from the original quartz component in coal or is formed by the conversion of SiO2-Al2O3 system. Analyzing the enrichment characteristics of several heavy metals in high-silicon coal and its fly ash, it can be found that Cr, Cu, and As are enriched in the high-silicon coal, and Mo is the heavy metal enriched in the electric fields of the ESP, while Se contents in high-silicon coal and fly ash in China are both lower than the world average level. The contents of radioactive elements of Th and U in the fine-particle high-silicon fly ash are higher than the average of world coal ash, and the enrichment factors in the fly ash in the four electric fields of the ESP are 1.51 and 1.59, respectively.
  • 加载中
    1. [1]

      LU S Y, ZHANG H M, SOJINU S O, LIU G H, ZHANG J Q, NI H G. Trace elements contamination and human health risk assessment in drinking water from Shenzhen, China[J]. Environ Monit Assess, 2015,187(1)4220.

    2. [2]

      MEHARG A A, RAHMAN M M. Arsenic contamination of Bangladesh paddy field soils: Implications for rice contribution to arsenic consumption[J]. Environ Sci Technol, 2003,37(2):229-234.

    3. [3]

      YANG P T, HASHIMOTO Y, WU W J, HUANG J H, CHIANG P N, WANG S L. Effects of long-term paddy rice cultivation on soil arsenic speciation[J]. J Environ Manage, 2020,254109768.

    4. [4]

      CLARKE L B, SLOSS L L. Trace Elements Emissions from Coal Combustion and Gasification[M]. London: IEA Coal Research, 1992, 111.

    5. [5]

      YAO Z T, JI X S, SARKER P K, TANG J H, GE L Q, XIA M S, XI Y Q. A comprehensive review on the applications of coal fly ash[J]. EarthA-Sci Rev, 2015,141:105-121.

    6. [6]

      LIU Gui-jian, PENG Zi-cheng, YANG Ping-yue, WANG Gui-liang, SONG Chao. Changes of trace elemetns in coal during combustion[J]. J Fuel Chem Technol, 2001,29(2):119-123.

    7. [7]

      FINKELMAN R B, OREM W, CASTRANOVA V, TATU C A, BELKIN H B, ZHENG B, LERCH H E, MAHARAJ S V, BATES A L. Health impacts of coal and coal use: Possible solutions[J]. Int J Coal Geol, 2002,50(1/4):425-443.

    8. [8]

      SAIKIA B K, WARD C R, OLIVEIRA M L S, HOWER J C, LEAO F D, JOHNSTON M N, O'BRYAN A, SHARMA A, BARUAH B P, SILVA L F O. Geochemistry and nano-mineralogy of feed coals, mine overburden, and coal-derived fly ashes from Assam (North-east India): A multi-faceted analytical approach[J]. Int J Coal Geol, 2015,137:19-37.

    9. [9]

      JONES K B, RUPPERT L F, SWANSON S M. Leaching of elements from bottom ash, economizer fly ash, and fly ash from two coal-fired power plants[J]. Int J Coal Geol, 2012,94:337-348.

    10. [10]

      DUTTA B K, KHANRA S, MALLICK D. Leaching of elements from coal fly ash: Assessment of its potential for use in filling abandoned coal mines[J]. Fuel, 2009,88(7):1314-1323.

    11. [11]

      AKAR G, POLAT M, GALECKI G, IPEKOGLU U. Leaching behavior of selected trace elements in coal fly ash samples from Yenikoy coal-fired power plants[J]. Fuel Process Technol, 2012,104:50-56.

    12. [12]

      JEGADEESAN G, AL-ABED , S R, PINTO P. Influence of trace metal distribution on its leachability from coal fly ash[J]. Fuel, 2008,87(10/11):1887-1893.

    13. [13]

      DONG Jing-lan, GENG Xiao, GAO Zheng-yang, LIU Yan-feng. Adsorption mechanism of trace As on the defect sites of SiO2 in fly ash[J]. J Fuel Chem Technol, 2018,46(11):1401-1408.

    14. [14]

      ZHAO S L, DUAN Y F, LIU M, WANG C P, ZHOU Q, LU J H. Effects on enrichment characteristics of trace elements in fly ash by adding halide salts into the coal during CFB combustion[J]. J Energy Inst, 2018,91(2):214-221.

    15. [15]

      LAN Q, HE X Z, COSTA D J, TIAN L W, ROTHMAN N, HU G, MUMFORD J L. Indoor coal combustion emissions, GSTM1 and GSTT1 genotypes, and lung canceer risk: A case-control study in Xun Wei, China[J]. Cancer Epidem Biomar, 2000,9(6):605-608.

    16. [16]

      DAI S F, TIAN L W, CHOU C L, ZHOU Y P, ZHANG M Q, ZHAO L, WANG J M, YANG Z, CAO H Z, REN D Y. Mineralogical and compositional characteristics of Late Permian coals from an area of high lung cancer rate in Xuan Wei, Yunnan, China: Occurrence and origin of quartz and chamosite[J]. Int J Coal Geol, 2008,76(4):318-327.

    17. [17]

      YONG Qi-run, GONG Ben-gen, ZHAO Yong-chun, ZHANG Jun-ying. Carbothermal reduction of Si-Al-Fe-Ca quaternary system in a high-silica coal[J]. J Fuel Chem Technol, 2017,45(11):1296-1302.

    18. [18]

      ZHOU Lin, SHAO Long-yi, LIU Jun-xia, SONG Xiao-yan. Affects of indoor PM10 in Xuanwei on lung cell apoptosis[J]. China Environ Sci, 2010,30(7):1004-1008.

    19. [19]

      FAN Jing-sen, SHAO Long-yi, WANG Jing, WANG Jian-ying, LI Ze-xi. Variations in mass concentrations of indoor inhalable particulates in the coal-burning indoor air in Xuanwei County, Yunnan province[J]. China Environ Sci, 2012,32(8):1379-1383.

    20. [20]

      ZHAO Y C, ZHANG J Y, ZHENG C G. Transformation of aluminum-rich minerals during combustion of a bauxite-bearing Chinese coal[J]. Int J Coal Geol, 2012,94:182-190.

    21. [21]

      YU Dun-xi, XU Ming-hou, YI Fan, HUANG Jian-hui, LI Geng. A review on particle formation mechanisms during coal combstion[J]. Coal Convers, 2004,27(4):7-12.

    22. [22]

      KETRIS M P, YUDOVICH Y E. Estimations of clarkes for carbonaceous biolithes: World averages for trace element contents in black shales and coals[J]. Int J Coal Geol, 2009,78(2):135-148.

    23. [23]

      MARTINEZ-TARAZONA M R, SPEARS D A. The fate of trace elements and bulk minerals in pulverized coal combustion in a power station[J]. Fuel Process Technol, 1996,47(1):79-92.

    24. [24]

      BUHRE B J P, HINKEY J T, GUPTA R P, NELSON P F, WALL T F. Fine ash formation during combustion of pulverised coal-coal property impacts[J]. Fuel, 2006,85(2):185-193.

    25. [25]

      MCLENNAN A R, BRYANT G W, STANMORE B R, WALL T F. Ash formation mechanisms during pf combustion in reducing conditions[J]. Energy Fuels, 2000,14(1):150-159.

    26. [26]

      SENIOR C L, BOOL Ⅲ L E, SRINIVASACHAR S, PEASE B R, PORLE K. Pilot scale study of trace element vaporization and condensation during combustion of a pulverized sub-bituminous coal[J]. Fuel Process Technol, 2000,63:149-165.

  • 加载中
    1. [1]

      Mochou GAOShan MENGJinzhong ZHANGWenhua FENGShuo DONGJianping CHENYanbao ZHAOLaigui YURongrong YINGXueyan ZOU . Dual‐surface capped hydroxyapatite nano‐amendment with tuned alternate long‐short chain configuration for efficient adsorption towards multi‐heavy metal ions in complex‐contaminated systems. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1427-1438. doi: 10.11862/CJIC.20240431

    2. [2]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    3. [3]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    4. [4]

      Yun ChenDaijie DengLi XuXingwang ZhuHenan LiChengming Sun . Covalent bond modulation of charge transfer for sensitive heavy metal ion analysis in a self-powered electrochemical sensing platform. Acta Physico-Chimica Sinica, 2026, 42(1): 100144-0. doi: 10.1016/j.actphy.2025.100144

    5. [5]

      Yerong Chen Bingbin Yang Xinglei He Yuqi Lin Keyin Ye . Enzyme-Directed Evolution Enables Bioconversion of Organosilicon Compounds. University Chemistry, 2025, 40(10): 121-129. doi: 10.12461/PKU.DXHX202411054

    6. [6]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    7. [7]

      Tiancheng Yang Yang Yang Chunhua Qu Rui Chu Yue Xia . Wandering through the Kingdom of Chinese Mineral Medicines. University Chemistry, 2024, 39(9): 94-101. doi: 10.12461/PKU.DXHX202403015

    8. [8]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    9. [9]

      Haiyu ZhuZhuoqun WenWen XiongXingzhan WeiZhi Wang . 二维半金属/硅异质结中肖特基势垒高度的准确高效预测. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-0. doi: 10.1016/j.actphy.2025.100078

    10. [10]

      Houzhen Xiao Mingyu Wang Yong Liu Bangsheng Lao Lingbin Lu Minghuai Yu . Course Ideological and Political Design of Combustion Heat Measurement Experiment. University Chemistry, 2024, 39(2): 7-13. doi: 10.3866/PKU.DXHX202310011

    11. [11]

      Xin FengKexin GuoChunguang JiaBowen LiuSuqin CiJunxiang ChenZhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050

    12. [12]

      Xinlong XUChunxue JINGYuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046

    13. [13]

      Wenjuan SHIYuke LUXiuyuan LILei HOUYaoyu WANG . Mg(Ⅱ) metal-organic frameworks based on biphenyltetracarboxylic acid: Synthesis and CO2 adsorption and catalytic conversion performance. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2455-2463. doi: 10.11862/CJIC.20250220

    14. [14]

      Jiangjuan Shao Xuan Li Jingdan Weng Xiaolei Chen Fei Xu Yulu Ma Nianguang Li Shizhong Zheng . Improvement in the Experimental Teaching Design of Physical and Chemical Identification and Quantification of Mineral Drugs. University Chemistry, 2024, 39(10): 137-142. doi: 10.3866/PKU.DXHX202312079

    15. [15]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    16. [16]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    17. [17]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    18. [18]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    19. [19]

      Shuyong Zhang Yaxian Zhu Wenqing Zhang Yuzhi Wang Jing Lu . Ideological and Political Design of Combustion Heat Measurement Experiment: Determination of Heat Value of Agricultural and Forestry Wastes. University Chemistry, 2024, 39(2): 1-6. doi: 10.3866/PKU.DXHX202303026

    20. [20]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

Metrics
  • PDF Downloads(3)
  • Abstract views(1774)
  • HTML views(394)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return