Citation: BU Yan, ZHAO Guo-li, WANG Shao-jun, LING Feng-xiang, ZHANG Cheng. Effect of silica promoter on the structure of CoMo/Al2O3-SiO2 catalysts[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(4): 463-469. shu

Effect of silica promoter on the structure of CoMo/Al2O3-SiO2 catalysts

Figures(8)

  • The characterization of a series of CoMo/Al2O3-SiO2 catalysts with different SiO2 contents were studied using in-situ FT-IR, Raman, UV-Vis and H2-TPR techniques. The results show that the increase of the silica component in CoMo/Al2O3-SiO2 catalysts can promote the transformation of octahedral molybdenum species into tetrahedral molybdenum species, and the higher SiO2 content can contribute to the transformation. Proper amount of silica component in the mixed supports can alter the interaction between the support and the active metals, resulting in higher hydrodesulfurization(HDS) activity of CoMo/Al2O3-SiO2 catalysts.
  • 加载中
    1. [1]

      ZHENG Yu-yin, LIU Bai-jun. Recent advances in development of hydrotreating catalysts[J]. Ind Catal, 2003,11(7):1-5.  

    2. [2]

      ZHANG Yu-han, LING Feng-xiang, WANG Shao-jun, ZHAO Guo-li. In-situ FTIR studies of Co-Mo/-Al2O3 catalysts[J]. J Fuel Chem Technol, 2013,41(6):710-714.  

    3. [3]

      PAROLA V, DEGANELLO G, VENEZIA A M. CoMo catalysts supported on aluminosilicates: synergy between support and sodium effects[J]. Appl Catal A: Gen, 2004,260(2):237-247. doi: 10.1016/j.apcata.2003.10.020

    4. [4]

      AL-DALAMA K, STANISLAUS A. A Comparative study of the influence of chelating agents on the hydrodesulfurization(HDS) activity of alumina and silica-alumina-supported CoMo catalysts[J]. Energy Fuels, 2006,20(5):1777-1783. doi: 10.1021/ef060125a

    5. [5]

      ZEPEDA T A, PAWELEC B, FIERRO J L G, OLIVAS A, FUENTES S, HALACHEV T. Effect of Al and Ti content in HMS material on the catalytic activity of NiMo and CoMo hydrotreating catalysts in the HDS of DBT[J]. Microporous Mesoporous Mater, 2008,111(1/3):157-170.  

    6. [6]

      WU Yu-hang, LING Feng-xiang, ZHAO Guo-li, WANG Shao-jun. An In-situ FT-IR study on the CoMo/Al2O3-SiO2 catalysts[J]. Contemp Chem Ind, 2015,44(5):962-964.

    7. [7]

      VAKROS J, LYCOURGHIOTIS A, VOYIATZIS G A, SIOKOU A, KORDULIS C. CoMo/Al2O3-SiO2 catalysts prepared by co-equilibrium deposition filtration: Characterization and catalytic behavior for the hydrodesulphurization of thiophene[J]. Appl Catal B: Environ, 2010,96(3/4):496-507.

    8. [8]

      EISCHENS R P, PLISKIN W A. The infrared spectra of adsorbed molecules[J]. Adv Catal, 1958,10:1-56.

    9. [9]

      MORTERRA C, BOLIS V, MAGNACCA G. IR spectroscopic and microcalorimetric characterization of lewis acid sites on (transition phase) Al2O3 using adsorbed CO[J]. J Am Chem Soc, 1994,10(6):1812-1824.

    10. [10]

      MAUGÉF , LAVALLEY J C. FT-IR study of co adsorption on sulfided Mo/Al2O3 unpromoted or promoted by metal carbonyls: Titration of sites[J]. J Catal, 1992,137(1):69-76. doi: 10.1016/0021-9517(92)90139-9

    11. [11]

      DUJARDIN C, LÉLIAS M A, GESREL J, TRAVERT A, DUCHET J C, MAUGE F. Towards the characterization of active phase of (Co)Mo sulfide catalysts under reaction conditions[J]. Appl Catal A: Gen, 2007,322(1):46-57.  

    12. [12]

      MESTL G, SRINIVASAN T K K. Raman spectroscopy of monolayer-type catalysts: Supported molybdenum oxides[J]. Cat Rev: Sci Eng, 1998,40(4):451-570. doi: 10.1080/01614949808007114

    13. [13]

      PAPADOPOULOU C, VAKROS J, MATRALIS H K, KORDULIS C, LYCOURGHIOTIS A. On the relationship between the preparation method and the physicochemical and catalytic properties of the CoMo/-Al2O3 hydrodesulfurization catalysts[J]. J Colloid Interface Sci, 2003,261(1):146-153. doi: 10.1016/S0021-9797(02)00167-4

    14. [14]

      BERGWERFF J A, JANSEN M, LELIVELD B G, VISSER T, DE JONG K, WECKHUYSEN B. Influence of the preparation method on the hydrotreating activity of MoS2/Al2O3 extrudates: A Raman microspectroscopy study on the genesis of the active phase[J]. J Catal, 2006,243(2):292-302. doi: 10.1016/j.jcat.2006.07.022

    15. [15]

      CHRISTODOULAKIS A, HERACLEOUS E, LEMONIDOU A A, BOGHOSIAN S. An operando Raman study of structure and reactivity of alumina-supported molybdenum oxide catalysts for the oxidative dehydrogenation of ethane[J]. J Catal, 2006,242(1):16-25.  

    16. [16]

      JEZIOROWSKI H, KNOEZINGER H, GRANGE P, GAJARDO P. Raman spectra of cobalt molybdenum oxide supported on silica[J]. J Phys Chem, 1980,84(14):1825-1829. doi: 10.1021/j100451a017

    17. [17]

      NIKOLOVA D, EDREVA-KARDJIEVA R, GIURGINCA M, MEGHEA A, VAKROS J, VOYIATZIS G A, KORDULIS C. The effect of potassium addition on the state of the components in the oxide precursor of the (Ni)(Mo)/-Al2O3 water-gas shift catalysts: FT-IR, diffuse reflectance and Raman spectroscopic studies[J]. Vib Spectrosc, 2007,44(2):343-350. doi: 10.1016/j.vibspec.2007.03.002

    18. [18]

      VAKROS J, BOURIKAS K, KORDULIS C, LYCOURGHIOTIS A. Influence of the impregnation ph on the surface characteristics and the catalytic activity of the Mo/γ-Al2O3 and CoMo/γ-Al2O3 hydrodesulfurization catalysts prepared by equilibrium deposition filtration (EDF)[J]. J Phys Chem B, 2003,107(8):1804-1813. doi: 10.1021/jp020953e

    19. [19]

      VAN DE WATER L G A, BERGWERFF J A, LELIVELD G, WECKHUYSEN B M, DE JONG K. Insights into the preparation of supported catalysts: A spatially resolved raman and UV-Vis spectroscopic study into the drying process of CoMo/γ-Al2O3 catalyst bodies[J]. J Phys Chem B, 2005,109(30):14513-14522. doi: 10.1021/jp051037e

    20. [20]

      VAN DE WATER L G A, BERGWERFF J A, NIJHUIS T A, DE JONG K P, WECKHUYSEN B M. UV-Vis microspectroscopy: Probing the initial stages of supported metal oxide catalyst preparation[J]. J Am Chem Soc, 2005,127(14):5024-5025. doi: 10.1021/ja044460u

    21. [21]

      PORTELA L, GRANGE P, DELMON B. The adsorption of nitric oxide on supported Co-Mo hydrodesulfurization catalysts: A review[J]. Catal Rev: Sci Eng, 1995,37(4):699-731. doi: 10.1080/01614949508006452

    22. [22]

      QU L, ZHANG W, KOOYMAN P J, PRINS R. MAS NMR, TPR, and TEM studies of the interaction of NiMo with alumina and silica-alumina supports[J]. J Catal, 2003,215(1):7-13. doi: 10.1016/S0021-9517(02)00181-1

    23. [23]

      HENSEN E J M, WENDLANDT K P, VALYON J, BORNMANN P. Structure of MoO3/Al2O3-SiO2 catalysts[J]. Appl Catal, 1991,69(1):205-220. doi: 10.1016/S0166-9834(00)83303-5

    24. [24]

      ARNOLDU P, DE JONGE J C M, MOULUN J A. Temperature-programed reduction of molybdenum(VI) oxide and molybdenum(IV) oxide[J]. J Phys Chem, 1985,89(21):4517-4526. doi: 10.1021/j100267a021

    25. [25]

      RAJAGOPAL S, MARNIH J, MARZARI J A, MIRANDA R. Silica-alumina-supported acidic molybdenum catalysts-TPR and XRD characterization[J]. J Catal, 1994,147(2):417-428.

    26. [26]

      MARZARI J A, RAJAGOPAL S, MIRANDA R. Bifunctional mechanism of pyridine hydrodenitrogenation[J]. J Catal, 1995,156(2):255-264. doi: 10.1006/jcat.1995.1252

  • 加载中
    1. [1]

      Yang Wang Yunpeng Fu Xiaoji Liu Guotao Zhang Guobin Li Wanqiang Liu Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113

    2. [2]

      Xueqi YangJuntao ZhaoJiawei YeDesen ZhouTingmin DiJun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074

    3. [3]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    4. [4]

      Xiaorui ChenXuan LuoTongming SuXinling XieLiuyun ChenYuejing BinZuzeng QinHongbing Ji . Ga-doped Cu/γ-Al2O3 bifunctional interface sites promote the direct hydrogenation of CO2 to DME. Acta Physico-Chimica Sinica, 2025, 41(10): 100126-0. doi: 10.1016/j.actphy.2025.100126

    5. [5]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    6. [6]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    7. [7]

      Wenjuan SHIYuke LUXiuyuan LILei HOUYaoyu WANG . Mg(Ⅱ) metal-organic frameworks based on biphenyltetracarboxylic acid: Synthesis and CO2 adsorption and catalytic conversion performance. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2455-2463. doi: 10.11862/CJIC.20250220

    8. [8]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    9. [9]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    10. [10]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    11. [11]

      Xiaofan ZHANGYu DUANMeijie SHINan LURenhong LIXiaoqing YAN . Z-scheme Co3O4/BiOBr heterojunction for efficient photoreduction CO2 reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1878-1888. doi: 10.11862/CJIC.20250079

    12. [12]

      Dan LUOXingcheng LIUDong LITong CHANG . Metal-support interaction effects on CO activation over Con/SiO2 catalysts. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2337-2344. doi: 10.11862/CJIC.20250003

    13. [13]

      Jianyu QinYuejiao AnYanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-0. doi: 10.3866/PKU.WHXB202408002

    14. [14]

      Xinyu YinHaiyang ShiYu WangXuefei WangPing WangHuogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-0. doi: 10.3866/PKU.WHXB202312007

    15. [15]

      Xingyu Liao Xiangming Yi Kin Shing Chan . 追凶之路上的怪客——硫化氢. University Chemistry, 2025, 40(6): 172-176. doi: 10.12461/PKU.DXHX202408039

    16. [16]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    17. [17]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    18. [18]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    19. [19]

      Ruixin XUHongtuo LIChen SHIYanhong YAN . Factors influencing the spectral properties of composite luminescent materials SrTiO3: Eu3+/SrAl2O4: Eu2+, Dy3+. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2307-2316. doi: 10.11862/CJIC.20250055

    20. [20]

      Aiping LiangChaolin LiChen LingHengpan DuanWenhui Wang . CoTiO3 for highly efficient peroxymonosulfate activation: The critical role of Co–O–Ti bond for rapid redox cycles of Co2+/Co3+. Chinese Chemical Letters, 2025, 36(10): 110788-. doi: 10.1016/j.cclet.2024.110788

Metrics
  • PDF Downloads(4)
  • Abstract views(1234)
  • HTML views(147)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return