Citation: HUO Xiao-dong, WANG Zhi-qing, ZHANG Rong, SONG Shuang-shuang, HUANG Jie-jie, FANG Yi-tian. Preparation of β-Mo2C, Ni3Mo3N/β-Mo2C and its catalytic performance for methanation[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(4): 457-462. shu

Preparation of β-Mo2C, Ni3Mo3N/β-Mo2C and its catalytic performance for methanation

  • Corresponding author: FANG Yi-tian, fyt@sxicc.ac.cn
  • Received Date: 9 October 2015
    Revised Date: 10 December 2015

Figures(4)

  • A complexes was produced using hexamethylenetetramine(HMT) as the complexing agent of ammonium molybdate, and β-Mo2C was prepared by a simple thermal decomposition of this complexes. And then Ni was introduced and the bimetallic carbide Ni3Mo3N/β-Mo2C was prepared. The as-prepared products were characterized by XRD, low-temperature nitrogen adsorption, SEM, HRTEM, element analysis (EA), and the performances of the prepared catalysts for methanation were investigated. The results showed that the bulk molybdenum carbide exhibited high conversion of CO (xCO), but xCO and selectivity of CH4 (sCH4) on β-Mo2C decreased from 75.93% and 36.79% to 67.41% and 33.54% within 100 h. Thus the catalytic activity was not stable and sCH4 was low. The addition of Ni markedly promoted the catalyst activity and stability, xCO and sCH4 on Ni3Mo3N/β-Mo2C increased from 83.15% and 46.64% to 92.51% and 57.23% within 100h, which should be attributed to the newly produced Ni3Mo3N after Ni addition.
  • 加载中
    1. [1]

      FU Guo-zhong, CHEN Chao. NG demand and supply in China and economic and technical analysis of coal gasification technology[J]. Sino-Global Energy, 2010,15(6):28-34.  

    2. [2]

      YANG Chun-sheng. Prospects for coal gasification in China[J]. Sino-Global Energy, 2010,15(7):35-40.  

    3. [3]

      LU Xia, CHEN Shi-heng, WANG Wan-li, MA Zi-feng. Progress in Ni-based catalysts for CO methanation[J]. Petrochem Technol, 2010,39(3):340-345.  

    4. [4]

      MO Xin-man, DONG Xin-fa, LIU Qi-hai. Selectivity methanation of CO over Ni-based catalysts supported on nano-Zirconia[J]. Petrochem Technol, 2008,37(4):656-661.

    5. [5]

      LUO Lai-tao, LI Song-jun, DENG Geng-feng. Effect of samarium on Ni/sepiolite methanation catalyst[J]. J Fuel Chem Technol, 2011,29(4):302-304.  

    6. [6]

      TIAN Da-yong, YANG Xia, QIN Shao-dong. Effect of supporter and promoter on stability of Ni-based methanation catalysts[J]. Chem Ind Eng Prog, 2012,31(S1):229-231.  

    7. [7]

      CHEN J G. Carbide and nitride over layers on early transition metal surface: Preparation, characterization and reactivities[J]. Chem Rev, 1996,96(4):1477-1498. doi: 10.1021/cr950232u

    8. [8]

      RAMANATHAN S, OYAMA S T. New catalysts for hydroprocessing: Transition metal carbides and nitrides[J]. J Phys Chem, 1995,99(44):16365-16372. doi: 10.1021/j100044a025

    9. [9]

      CHOI J S, MAUGE F, PICHON C. Alumina-supported cobalt-molybdenum sulfide modified by tin via surface organometallic chemistry: Application to the simultaneous hydrodesulfurization of thiophenic compounds and the hydrogenation of olefins[J]. Appl Catal A: Gen, 2004,267(2):203-216.  

    10. [10]

      MASHKINA A V. Thiophene hydrogenation to tetrahydrothiophene over tungsten sulfide catalysts[J]. Kinet Catal, 2003,44(2):277-282. doi: 10.1023/A:1023316831685

    11. [11]

      ABE H, BELL A T. Catalytic hydrotreating of Indole, Benzothiophene and Benzofuran over molybdenum nitride[J]. Catal Lett, 1993,18(3):1-8.  

    12. [12]

      SAJKOWSKI D J, OYAMA S T. Catalytic hydrotreating by molybdenum nitrides and molybdenum carbides[J]. Appl Catal A: Gen, 1996,134(2):339-349. doi: 10.1016/0926-860X(95)00202-2

    13. [13]

      OSHIKAWA K, NAGAI M, OMI S. Characterization of molybdenum carbides for methane reforming by TPR, XRD, and XPS[J]. J Phys Chem B, 2001,105(38):9124-9131. doi: 10.1021/jp0111867

    14. [14]

      WANG D, LUNSFORD J H, ROSYNEK M P. Characterization of a Mo/ZSM-5 catalyst for the conversion of methane to benzene[J]. J Catal, 1997,169(1):347-358. doi: 10.1006/jcat.1997.1712

    15. [15]

      BLEKKAN E, GUONG P H, LEDOUX M J, GUILLE J. Isomerization of n-heptane on an oxygen-modified molybdenum carbide catalyst[J]. Ind Eng Chem Res, 1994,33(2):1657-1664.  

    16. [16]

      PARK H K. A general surface propertiesand reactivity of supported and unsupported molybdenum nitride catalysts[J]. Appl Catal, 1997,150(1):21-35. doi: 10.1016/S0926-860X(96)00297-9

    17. [17]

      KIM D. CoMo bimetallic nitrides catalysts for thiophene HDS[J]. Catal Lett, 1997,43(1):91-95.

    18. [18]

      PAUL A. Thiophene HDS over alumina-supported molybdenum nitride and carbide: Adsorption sites,catalytic activities and nature of the active surface[J]. J Catal, 1996,164(1):109-121. doi: 10.1006/jcat.1996.0367

    19. [19]

      SCHLATTER J C, OYAMA S T. Catalytic behavior of selected transition-metal carbide, nitride and borides in the HDN of quinolin[J]. Ind Eng Chem Res, 1988,27(9):1648-1653. doi: 10.1021/ie00081a014

    20. [20]

      LI S, LEE J S, HYEON T, SUSLICK K S. Catalytic hydrodenitrogenation of indole over molybdenum nitride and carbides with different structures[J]. Appl Catal A: Gen, 1999,184(1):1-9. doi: 10.1016/S0926-860X(99)00044-7

    21. [21]

      SUNDARAMURTHY V, DALAI A K, ADJAYE J. Comparison of P-containing γ-Al2O3 supported Ni-Mo bimetallic carbide, nitride and sulfide catalysts for HDN and HDS of gas oils derived from Athabasca bitumen[J]. Appl Catal A: Gen, 2006,311(1):155-163.

    22. [22]

      JEONG G. HDN of pyridine over molybdenum carbide[J]. J Catal, 1995,154(1):33-40. doi: 10.1006/jcat.1995.1143

    23. [23]

      COLLING C W, THOMPSON L T. The structure and function of supported molybdenum nitride hydrodenitrogenation catalysts[J]. J Catal, 1994,146(1):193-203. doi: 10.1016/0021-9517(94)90022-1

    24. [24]

      MIGA K, STANCZYK K, SAYAG C, BRODZKI D, DJÉGA-MARIADASSOU G. Bifunctional behavior of bulk MoOxNy and nitrided supported NiMo catalyst in hydrodenitrogenation of indole[J]. J Catal, 1999,183(1):63-68. doi: 10.1006/jcat.1998.2381

    25. [25]

      OZKAN U S, ZHANG L, CLARK P A. Performance and postreaction characterization of γ-Mo2N catalysts in simultaneous hydrodesulfurization and hydrodenitrogenation reactions[J]. J Catal, 1997,172(2):294-306. doi: 10.1006/jcat.1997.1873

    26. [26]

      NAGAI M, KURAKAMI T, OMI S. Activity of carbided molybdenum-alumina for CO2 hydrogenation[J]. Catal Today, 1998,45(1/4):235-239.

    27. [27]

      NAGAI M, OSHIKAWA K, KURAKAMI T, MIYAO T, OMI S. Surface properties of carbided molybdenum-alumina and its activity for CO2 hydrogenation[J]. J Catal, 1998,180(1):14-23. doi: 10.1006/jcat.1998.2262

    28. [28]

      LEE J S, YEOM M H, PARK K Y, NAM I S, CHUNG J S, KIM Y G, MOON S H. Preparation and benzene hydrogenation activity of supported molybdenum carbide catalysts[J]. J Catal, 1991,128(1):126-136. doi: 10.1016/0021-9517(91)90072-C

    29. [29]

      YANG S, LI C, XU J, XIN Q. In situ probing of surface sites on supported molybdenum nitride catalyst by CO adsorption[J]. Chem Commun, 1997,127(13):1247-1248.  

    30. [30]

      AFANASIEV P. New single source route to the molybdenum nitride Mo2N[J]. Inorg Chem, 2002,41(21):5317-5319. doi: 10.1021/ic025564d

    31. [31]

      WANG H M, LI W, ZHANG M H. New approach to the synthesis of bulk and supported bimetallic molybdenum nitrides[J]. Chem Mater, 2005,17(12):3262-3267. doi: 10.1021/cm047735d

  • 加载中
    1. [1]

      Yongqing XuYuyao YangMengna WuXiaoxiao YangXuan BieShiyu ZhangQinghai LiYanguo ZhangChenwei ZhangRobert E. PrzekopBogna SztorchDariusz BrzakalskiHui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003

    2. [2]

      Yang Li Jiachen Li Daidi Fan . 二硫化钼纳米片的制备及其纳米酶性能探究——介绍一个大学化学综合实验. University Chemistry, 2025, 40(8): 233-240. doi: 10.12461/PKU.DXHX202410016

    3. [3]

      Yanzhe WANGXiaoming GUOQiangsheng GUOLiang LIBin LUPeihang YE . Effect of Ce introduction on the low-temperature performance of NiAl catalyst for CO2 methanation. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2218-2228. doi: 10.11862/CJIC.20250202

    4. [4]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    5. [5]

      Haiqiang Lin Weizheng Weng Jingdong Lin Mingshu Chen Xueming Fang Lefu Yang . Diverse Variables-Driven Catalytic Optimization: Experimental Enhancement and Instructional Design for Selective Methane Oxidation on Supported Nickel-based Catalysts. University Chemistry, 2025, 40(11): 327-336. doi: 10.12461/PKU.DXHX202505106

    6. [6]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    7. [7]

      Yiting HuoXin ZhouFeifan ZhaoChenbin AiZhen WuZhidong ChangBicheng Zhu . Boosting photocatalytic CO2 methanation through TiO2/CdS S-scheme heterojunction and fs-TAS mechanism study. Acta Physico-Chimica Sinica, 2025, 41(11): 100148-0. doi: 10.1016/j.actphy.2025.100148

    8. [8]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    9. [9]

      Junjian WangQingquan YuShunyao LiuYuke ChenXiaoyu LiuGuodong LiXiaoyan LiuHong LiuWeijia Zhou . Laser-Induced Carbonization of Hydroxyapatite Sandwich Paper for Inkless Printing. Acta Physico-Chimica Sinica, 2024, 40(4): 2304024-0. doi: 10.3866/PKU.WHXB202304024

    10. [10]

      Yutong Liu Xuemin Jing . Research Progress on the Catalytic Conversion of Methane in the Context of the “Dual Carbon” Goals. University Chemistry, 2025, 40(10): 101-113. doi: 10.12461/PKU.DXHX202412018

    11. [11]

      Huimin LiuKezhi LiXin ZhangXuemin YinQiangang FuHejun Li . SiC Nanomaterials and Their Derived Carbons for High-Performance Supercapacitors. Acta Physico-Chimica Sinica, 2024, 40(2): 2304026-0. doi: 10.3866/PKU.WHXB202304026

    12. [12]

      Chunyuan KangXiaoyu LiFan YangBai Yang . Ionic-bond crosslinked carbonized polymer dots for tunable and enhanced room temperature phosphorescence. Acta Physico-Chimica Sinica, 2026, 42(1): 100156-0. doi: 10.1016/j.actphy.2025.100156

    13. [13]

      Xinyi Fan Wancai Shi Zhenyu Sun . 甲烷——温室效应中的“隐形杀手”与绿色转机. University Chemistry, 2025, 40(11): 1-10. doi: 10.12461/PKU.DXHX202412060

    14. [14]

      Jiayin Hu Yafei Guo Long Li Tianlong Deng . Teaching Innovation of Salt-Water System Phase Diagrams under the “Dual Carbon” Background: Introducing the Pressurized CO2 Carbonization Phase Equilibria. University Chemistry, 2025, 40(11): 31-36. doi: 10.12461/PKU.DXHX202412031

    15. [15]

      Yuhang ZhangYi LiYuehan CaoYingjie ShuaiYu ZhouYing Zhou . Regulating the formation type by Ir of intermediates to suppress product overoxidation in photocatalytic methane conversion. Acta Physico-Chimica Sinica, 2026, 42(2): 100173-0. doi: 10.1016/j.actphy.2025.100173

    16. [16]

      Hongsheng Tang Yonghe Zhang Dexiang Wang Xiaohui Ning Tianlong Zhang Yan Li Hua Li . A Wonderful Journey through the Kingdom of Hazardous Chemicals. University Chemistry, 2024, 39(9): 196-202. doi: 10.12461/PKU.DXHX202403098

    17. [17]

      Xinyu XuJiale LuBo SuJiayi ChenXiong ChenSibo Wang . Steering charge dynamics and surface reactivity for photocatalytic selective methane oxidation to ethane over Au/Ti-CeO2. Acta Physico-Chimica Sinica, 2025, 41(11): 100153-0. doi: 10.1016/j.actphy.2025.100153

    18. [18]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    19. [19]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    20. [20]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

Metrics
  • PDF Downloads(2)
  • Abstract views(1597)
  • HTML views(250)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return