Citation: FAN Li-ping, XUE Song. Improvement in the performance of streptomycin wastewater MFC treatment and electricity generation by co-substrate addition[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(3): 370-377. shu

Improvement in the performance of streptomycin wastewater MFC treatment and electricity generation by co-substrate addition

  • Corresponding author: FAN Li-ping, flpsd@163.com
  • Received Date: 7 December 2016
    Revised Date: 22 January 2017

    Fund Project: the National Natural Science Foundation of China 61143007the Chinese-Macedonian Scientific and Technological Cooperation Project of Ministry of Science and Technology of the People's Republic of China [2016]10:4-4

Figures(15)

  • A microbial fuel cell system was built by using the mixed solution of K3[Fe (CN)6] and NaCl as catholyte, acclimated sediment of an artificial lake as the source of microbial species, and streptomycin wastewater as anolyte; the effect of co-substrate addition on the purification effect and electricity generation ability of the microbial fuel cell was investigated. The results show that the electricity generation ability and wastewater treatment effect of microbial fuel cell with streptomycin wastewater as anolyte are quite poor and deteriorate even further with the increase of the streptomycin concentration. However, the electricity generation ability and wastewater treatment effect of the microbial fuel cell can be significantly improved by adding glucose as a co-substrate to the anode streptomycin wastewater. In case without the co-substrate, the COD removal rate is only 52% when the concentration of streptomycin is 50 mg/L, with a steady electric current density of 25 mA/m2 and a steady output voltage of 4.72 mV; by adding the co-substrate, the COD removal rate reaches 92%, with a steady electric current density of 300 mA/m2 and a steady output voltage of 54 mV.
  • 加载中
    1. [1]

      KEEN P L, PATRICK D M. Tracking change:A look at the ecological footprint of antibiotics and antimicrobial resistance[J]. Antibiotics, 2013,2(2):191-205. doi: 10.3390/antibiotics2020191

    2. [2]

      LIEN L T, HOA N Q, CHUC N T, THOA N T, PHUC H D, DIWAN V, DAT N T, TAMHANKAR A J, LUNDBORG C S. Antibiotics in wastewater of a rural and an urban hospital before and after wastewater treatment, and the relationship with antibiotic use-a one year study from vietnam[J]. Int J Environ Res Public Health, 2016,13(6)588. doi: 10.3390/ijerph13060588

    3. [3]

      WANG Y, LU J, WU J, LIU Q, ZHANG H, JIN S. Adsorptive removal of fluoroquinolone antibiotics using bamboo biochar[J]. Sustainability, 2015,7(9):12947-12957. doi: 10.3390/su70912947

    4. [4]

      LINGHU Wen-sheng. Progress on treatment and analysis of antibiotic wastewater[J]. Chem Reagents, 2015,37(2):127-131.  

    5. [5]

      BRASCHI I, BLASIOLI S, GIGLI L, GESSA C E, ALBERTI A, MARTUCCI A. Removal of sulfonamide antibiotics from water:Evidence of adsorption into an organophilic zeolite Y by its structural modifications[J]. J Hazard Mater, 2010,178(1/3):218-225.  

    6. [6]

      DOLLIVER H, GUPTA S. Antibiotic losses in leaching and surface runoff from manure-amended agricultural land[J]. J Environ Qual, 2008,37(3):1227-1237. doi: 10.2134/jeq2007.0392

    7. [7]

      LI B, ZHANG T. Biodegradation and adsorption of antibiotics in the activated sludge process[J]. Environ Sci Technol, 2010,44(9):3468-3473. doi: 10.1021/es903490h

    8. [8]

      AKBARPOUR-TOLOTI A, MEHRDADI N. Wastewater treatment from antibiotics plant (UASB reactor)[J]. Int J Environ Res, 2011,5(1):241-246.

    9. [9]

      LIN Hai-Long, SONG Ge, SI Liang, YU Jian-Ping, CHEN Zhao-Bo, WU Yu-Feng. Advances in study on the biological treatment of antibiotic wastewater[J]. Chin Agri Sci Bull, 2012,28(11):258-261.  

    10. [10]

      GULKOWSKA A, LEUNG H W, SO M K, TANIYASU S, YAMASHITA N, YEUNG L W, RICHARDSON B J, LEI A P, GIESY J P, LAM P K. Removal of antibiotics from wastewater by sewage treatment facilities in Hong Kong and Shenzhen, China[J]. Water Res, 2008,42(1/2):395-403.  

    11. [11]

      CHEN Y S, ZHANG H B, LUO Y M, SONG J. Occurrence and dissipation of veterinary antibiotics in two typical swine wastewater treatment systems in east China[J]. Environ Monit Assess, 2012,184(4):2205-2217. doi: 10.1007/s10661-011-2110-y

    12. [12]

      LI W W, YU H Q, HE Z. Towards sustainable wastewater treatment by using microbial fuel cells-centered technologies[J]. Energy Environ Sci, 2014,7:911-924.  

    13. [13]

      LIU H, RAMNARAYANAN R, LOGAN B E. Production of electricity during wastewater treatment using a single chamber microbial fuel cell[J]. Environ Sci Technol, 2004,38(7):2281-2285. doi: 10.1021/es034923g

    14. [14]

      PANDEY B K, MISHRA V, AGRAWAL S. Production of bio-electricity during wastewater treatment using a single chamber microbial fuel cell[J]. Int J Eng, Sci Technol, 2011,3(4):42-47.  

    15. [15]

      MATHURIYA A S. Enhanced tannery wastewater treatment and electricity generation in microbial fuel cell by bacterial strains isolated from tannery waste[J]. Environ Eng Manag J, 2014,13(12):2945-2954.

    16. [16]

      CHENG Li-yu, XU Long-jun. Effects of electrode surface area on the performance of microbial fuel cells with the aging landfill leachate as substrate[J]. J Fuel Chem Technol, 2015,43(8):1011-1017.  

    17. [17]

      FAN Li-ping, ZHENG Yu-jiao, MIAO Xiao-hui. Effects of catholyte and dissolved oxygen on microbial fuel cell performance[J]. J Chem Eng Chin Univ, 2016,30(2):491-496.  

    18. [18]

      BOUALLAGUI H, LAHDHEB H, ROMDAN E B, RACHDI B, HAMDI M. Improvement of fruit and vegetable waste anaerobic digestion performance and stability with co-substrates addition[J]. J Environ Manage, 2009,90(5):1844-1849. doi: 10.1016/j.jenvman.2008.12.002

    19. [19]

      LU H F, ZHANG G M, LU Y F, ZHANG Y H, LI B M, CAO W. Using co-metabolism to accelerate synthetic starch wastewater degradation and nutrient recovery in photosynthetic bacterial wastewater treatment technology[J]. Environ Technol, 2016,37(7):775-784. doi: 10.1080/09593330.2015.1084050

    20. [20]

      RASOOL K, MAHMOUD K A, LEE D S. Influence of co-substrate on textile wastewater treatment and microbial community changes in the anaerobic biological sulfate reduction process[J]. J Hazard Mater, 2015,299(12):453-461.  

    21. [21]

      NOZARI M, SAMAEI M R, DEHGHANI M. The effect of co-metabolism on removal of hexadecane by microbial consortium from soil in a slurry sequencing batch reactor[J]. J Health Sci Surveillance Sys, 2014,2(3):113-124.  

  • 加载中
    1. [1]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    2. [2]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    3. [3]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    4. [4]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    5. [5]

      Ling WANGWeipeng YANZhuoyi ZHENGSihan ZHUMingxian GONGXiangyu MA . Fabrication of biochar-supported nano zero-valent iron and its high-efficiency performance for Cr(Ⅵ) removal from wastewater. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2441-2454. doi: 10.11862/CJIC.20250264

    6. [6]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    7. [7]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

    8. [8]

      Peiling Li Qing Feng Hongling Yuan Qin Wang . Live Interview Recording about the Penicillin Family. University Chemistry, 2024, 39(9): 122-127. doi: 10.3866/PKU.DXHX202311022

    9. [9]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    10. [10]

      Shunü Peng Huamin Li Zhaobin Chen Yiru Wang . Simultaneous Application of Multiple Quantitative Analysis Methods in Gas Chromatography for the Determination of Active Ingredients in Traditional Chinese Medicine Preparations. University Chemistry, 2025, 40(10): 243-249. doi: 10.12461/PKU.DXHX202412043

    11. [11]

      Ming Guan Xi Bai Yuhua Ma Fang Mi Weigang Fan Junjie Guo Guixin Li Yingbo Wang Han Zeng Jing Zeng Lu Xiao Yinping Li Hong Du Ya Gao . Exploration and Practice of Multi-School, Multi-Directional Synchronous Classrooms and Smart Teaching for Core Chemistry Courses at Xinjiang Normal University under the MOOC Westward Journey Initiative. University Chemistry, 2025, 40(11): 59-65. doi: 10.12461/PKU.DXHX202412123

    12. [12]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    13. [13]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    14. [14]

      Hailang JIAYujie LUPengcheng JI . Preparation and properties of nitrogen and phosphorus co-doped graphene carbon aerogel supported ruthenium electrocatalyst for hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2327-2336. doi: 10.11862/CJIC.20250021

    15. [15]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    16. [16]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    17. [17]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    18. [18]

      Xuexia He Zhibin Lei Pei Chen Qi Li Weiyu Deng Peng Hu . 以“溶度积规则”指导电荷转移共晶沉淀析出——材料类专业无机化学教学改革案例. University Chemistry, 2025, 40(8): 1-10. doi: 10.12461/PKU.DXHX202410099

    19. [19]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    20. [20]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

Metrics
  • PDF Downloads(1)
  • Abstract views(1017)
  • HTML views(119)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return