Study of the electrochemical oxidation mechanism of formaldehyde on gold electrode in alkaline solution
English
Study of the electrochemical oxidation mechanism of formaldehyde on gold electrode in alkaline solution
-
Key words:
- Rapid-scan time-resolved FTIR
- / Formaldehyde
- / Electrochemical oxidation
-
-
-
[1] T. Zerihun, P. Gründler, Oxidation of formaldehyde, methanol, formic acid and glucose at ac heated cylindrical Pt microelectrodes, J. Electroanal. Chem. 441 (1998) 57-63.[1] T. Zerihun, P. Gründler, Oxidation of formaldehyde, methanol, formic acid and glucose at ac heated cylindrical Pt microelectrodes, J. Electroanal. Chem. 441 (1998) 57-63.
-
[2] R. Parsons, T.V. Noot, The oxidation of small organic molecules: a survey of recent fuel cell related research, J. Electroanal. Chem. 257 (1988) 9-45.[2] R. Parsons, T.V. Noot, The oxidation of small organic molecules: a survey of recent fuel cell related research, J. Electroanal. Chem. 257 (1988) 9-45.
-
[3] N.M. Markovic, J.P.N. Ross, Surface science studies of model fuel cell electrocatalysts, Surf. Sci. Rep. 45 (2002) 117-229.[3] N.M. Markovic, J.P.N. Ross, Surface science studies of model fuel cell electrocatalysts, Surf. Sci. Rep. 45 (2002) 117-229.
-
[4] T. Iwasita, Electrocatalysis of methanol oxidation, Electrochim. Acta 47 (2002) 3663-3674.[4] T. Iwasita, Electrocatalysis of methanol oxidation, Electrochim. Acta 47 (2002) 3663-3674.
-
[5] Y.X. Chen, A. Miki, S. Ye, et al., Formate, an active intermediate for direct oxidation of methanol on Pt electrode, J. Am. Chem. Soc. 125 (2003) 3680-3681.[5] Y.X. Chen, A. Miki, S. Ye, et al., Formate, an active intermediate for direct oxidation of methanol on Pt electrode, J. Am. Chem. Soc. 125 (2003) 3680-3681.
-
[6] E.A. Batista, G.R.P. Malpass, A.J. Motheo, et al., New mechanistic aspects of methanol oxidation, J. Electroanal. Chem. 571 (2004) 273-282.[6] E.A. Batista, G.R.P. Malpass, A.J. Motheo, et al., New mechanistic aspects of methanol oxidation, J. Electroanal. Chem. 571 (2004) 273-282.
-
[7] M.C. Li, W.Y. Wang, C.N. Ma, et al., Enhanced electrocatalytic activity of Pt nanoparticles modified with PPy-HEImTfa for electrooxidation of formaldehyde, J. Electroanal. Chem. 661 (2011) 317-321.[7] M.C. Li, W.Y. Wang, C.N. Ma, et al., Enhanced electrocatalytic activity of Pt nanoparticles modified with PPy-HEImTfa for electrooxidation of formaldehyde, J. Electroanal. Chem. 661 (2011) 317-321.
-
[8] M.C. Santos, O.S. Bulhões, Electrogravimetric investigation of formaldehyde oxidation at Pt electrodes in acidic media, Electrochim. Acta 49 (2004) 1893-1901.[8] M.C. Santos, O.S. Bulhões, Electrogravimetric investigation of formaldehyde oxidation at Pt electrodes in acidic media, Electrochim. Acta 49 (2004) 1893-1901.
-
[9] V. Selvaraj, N. Grace, M. Alagar, Electrocatalytic oxidation of formic acid and formaldehyde on nanoparticle decorated single walled carbon nanotubes, J. Colloid Interface Sci. 333 (2009) 254-262.[9] V. Selvaraj, N. Grace, M. Alagar, Electrocatalytic oxidation of formic acid and formaldehyde on nanoparticle decorated single walled carbon nanotubes, J. Colloid Interface Sci. 333 (2009) 254-262.
-
[10] M.B. Brzezinska, Electrochemical oxidation of formaldehyde on gold and silver, Electrochim. Acta 30 (1985) 1193-1198.[10] M.B. Brzezinska, Electrochemical oxidation of formaldehyde on gold and silver, Electrochim. Acta 30 (1985) 1193-1198.
-
[11] M.L. Avramov-Ivić, N.A. Anastasijević, R.R. Adžić, A study of oxidation of formaldehyde on Au(3 3 2) by rotating disc-ring method, Electrochim. Acta 35 (1990) 725-729.[11] M.L. Avramov-Ivić, N.A. Anastasijević, R.R. Adžić, A study of oxidation of formaldehyde on Au(3 3 2) by rotating disc-ring method, Electrochim. Acta 35 (1990) 725-729.
-
[12] Z.Y. Zhou, N. Tian, Y.J. Chen, et al., In situ rapid-scan time-resolved microscope FTIR spectroelectrochemistry: study of the dynamic processes of methanol oxidation on a nanostructured Pt electrode, J. Electroanal. Chem. 573 (2004) 111-119.[12] Z.Y. Zhou, N. Tian, Y.J. Chen, et al., In situ rapid-scan time-resolved microscope FTIR spectroelectrochemistry: study of the dynamic processes of methanol oxidation on a nanostructured Pt electrode, J. Electroanal. Chem. 573 (2004) 111-119.
-
[13] B.K. Jin, L. Li, J.L. Huang, et al., IR spectroelectrochemical cyclic voltabsorptometry and derivative cyclic voltabsorptometry, Anal. Chem. 81 (2009) 4476-4481.[13] B.K. Jin, L. Li, J.L. Huang, et al., IR spectroelectrochemical cyclic voltabsorptometry and derivative cyclic voltabsorptometry, Anal. Chem. 81 (2009) 4476-4481.
-
[14] P. Liu, B.K. Jin, F.L. Cheng, A low temperature in situ infrared reflected absorbance spectroelectrochemical (LT-IRRAS) cell, J. Electroanal. Chem. 603 (2007) 269-274.[14] P. Liu, B.K. Jin, F.L. Cheng, A low temperature in situ infrared reflected absorbance spectroelectrochemical (LT-IRRAS) cell, J. Electroanal. Chem. 603 (2007) 269-274.
-
[15] B.K. Jin, P. Liu, Y. Wang, et al., Rapid-scan time-resolved FT-IR spectroelectrochemistry studies on the electrochemical redox process, J. Phys. Chem. B 111 (2007) 1517-1522.[15] B.K. Jin, P. Liu, Y. Wang, et al., Rapid-scan time-resolved FT-IR spectroelectrochemistry studies on the electrochemical redox process, J. Phys. Chem. B 111 (2007) 1517-1522.
-
[16] M. Avramov-Ivić, R.R. Adžić, A. Bewick, et al., An investigation of the oxidation of formaldehyde on noble metal electrodes in alkaline solutions by electrochemically modulated infrared spectroscopy (EMIRS), J. Electroanal. Chem. 240 (1988) 161-169.[16] M. Avramov-Ivić, R.R. Adžić, A. Bewick, et al., An investigation of the oxidation of formaldehyde on noble metal electrodes in alkaline solutions by electrochemically modulated infrared spectroscopy (EMIRS), J. Electroanal. Chem. 240 (1988) 161-169.
-
[17] R. Ortiz, O.P. Marquez, J. Marquez, et al., Necessity of oxygenated surface species for the electrooxidation of methanol on iridium, J. Phys. Chem. 100 (1996) 8389-8396.[17] R. Ortiz, O.P. Marquez, J. Marquez, et al., Necessity of oxygenated surface species for the electrooxidation of methanol on iridium, J. Phys. Chem. 100 (1996) 8389-8396.
-
[18] S. Haq, J.G. Love, H.E. Sanders, et al., Adsorption and decomposition of formic acid on Ni{1 1 0}, Surf. Sci. 325 (1995) 230-242.[18] S. Haq, J.G. Love, H.E. Sanders, et al., Adsorption and decomposition of formic acid on Ni{1 1 0}, Surf. Sci. 325 (1995) 230-242.
-
[19] O. Manoušek, J. Volke, Anodic oxidation of aromatic aldehydes at mercury electrodes, J. Electroanal. Chem. 43 (1973) 365-375.[19] O. Manoušek, J. Volke, Anodic oxidation of aromatic aldehydes at mercury electrodes, J. Electroanal. Chem. 43 (1973) 365-375.
-
[20] D. Barnes, P. Zuman, Polarographic reduction of aldehydes and ketones: XV. Hydration and acid-base equilibria accompanying reduction of aliphatic aldehydes, J. Electroanal. Chem. 46 (1973) 323-342.[20] D. Barnes, P. Zuman, Polarographic reduction of aldehydes and ketones: XV. Hydration and acid-base equilibria accompanying reduction of aliphatic aldehydes, J. Electroanal. Chem. 46 (1973) 323-342.
-
[21] C. Zhang, D. Donadio, G. Galli, First-principle analysis of the IR stretching band of liquid water, J. Phys. Chem. Lett. 9 (2010) 1398-1402.[21] C. Zhang, D. Donadio, G. Galli, First-principle analysis of the IR stretching band of liquid water, J. Phys. Chem. Lett. 9 (2010) 1398-1402.
-
[22] Y. Maréchal, The molecular structure of liquid water delivered by absorption spectroscopy in the whole IR region completed with thermodynamics data, J. Mol. Struct. 1004 (2011) 146-155.[22] Y. Maréchal, The molecular structure of liquid water delivered by absorption spectroscopy in the whole IR region completed with thermodynamics data, J. Mol. Struct. 1004 (2011) 146-155.
-
计量
- PDF下载量: 483
- 文章访问数: 3180
- HTML全文浏览量: 118