Study of the electrochemical oxidation mechanism of formaldehyde on gold electrode in alkaline solution

Rui-Wen Yan Bao-Kang Jin

Citation:  Rui-Wen Yan, Bao-Kang Jin. Study of the electrochemical oxidation mechanism of formaldehyde on gold electrode in alkaline solution[J]. Chinese Chemical Letters, 2013, 24(2): 159-162. shu

Study of the electrochemical oxidation mechanism of formaldehyde on gold electrode in alkaline solution

    通讯作者: Bao-Kang Jin,
  • 基金项目:

    the Program for New Century Excellent Talents in University (No. NECT-07-0002) (No. NECT-07-0002)

    Doctoral Program Foundation of the Ministry of Education of China, the Foundation of Scientific Innovation Team of Anhui Province (No. 2006KJ007TD) (No. 2006KJ007TD)

摘要: The oxidation of formaldehyde in alkaline solution was studied by in situ rapid-scan time-resolved IR spectroelectrochemistry (RS-TR-FTIRS) method. In the potential range between 0.7 V and 0.2 V, the gem-diol anions were oxidized (according to the 2765 cm-1 of vH-O and 1034 cm-1 of vCO downward IR bands) and the formate ions appeared (according to the 1588, 1357 cm-1 of the asymmetric and symmetric vOCO and 1380 cm-1 of δC-H upward IR bands) in aqueous solution. It was also confirmed that gem-diol anion was oxidized (according to the 2026, 1034 cm-1 downward IR bands) to formate ions (according to the 1595, 1357, 1380 cm-1 upward IR bands) and water (according to the 3427 cm-1 of vH-O upward IR band) in heavy water solution. The results illustrated that formaldehyde formed gem-diol anion in alkaline solution and was absorbed on the electrode surface; then gem-diol anion was oxidized to formate ions and water.

English

  • 
    1. [1] T. Zerihun, P. Gründler, Oxidation of formaldehyde, methanol, formic acid and glucose at ac heated cylindrical Pt microelectrodes, J. Electroanal. Chem. 441 (1998) 57-63.[1] T. Zerihun, P. Gründler, Oxidation of formaldehyde, methanol, formic acid and glucose at ac heated cylindrical Pt microelectrodes, J. Electroanal. Chem. 441 (1998) 57-63.

    2. [2] R. Parsons, T.V. Noot, The oxidation of small organic molecules: a survey of recent fuel cell related research, J. Electroanal. Chem. 257 (1988) 9-45.[2] R. Parsons, T.V. Noot, The oxidation of small organic molecules: a survey of recent fuel cell related research, J. Electroanal. Chem. 257 (1988) 9-45.

    3. [3] N.M. Markovic, J.P.N. Ross, Surface science studies of model fuel cell electrocatalysts, Surf. Sci. Rep. 45 (2002) 117-229.[3] N.M. Markovic, J.P.N. Ross, Surface science studies of model fuel cell electrocatalysts, Surf. Sci. Rep. 45 (2002) 117-229.

    4. [4] T. Iwasita, Electrocatalysis of methanol oxidation, Electrochim. Acta 47 (2002) 3663-3674.[4] T. Iwasita, Electrocatalysis of methanol oxidation, Electrochim. Acta 47 (2002) 3663-3674.

    5. [5] Y.X. Chen, A. Miki, S. Ye, et al., Formate, an active intermediate for direct oxidation of methanol on Pt electrode, J. Am. Chem. Soc. 125 (2003) 3680-3681.[5] Y.X. Chen, A. Miki, S. Ye, et al., Formate, an active intermediate for direct oxidation of methanol on Pt electrode, J. Am. Chem. Soc. 125 (2003) 3680-3681.

    6. [6] E.A. Batista, G.R.P. Malpass, A.J. Motheo, et al., New mechanistic aspects of methanol oxidation, J. Electroanal. Chem. 571 (2004) 273-282.[6] E.A. Batista, G.R.P. Malpass, A.J. Motheo, et al., New mechanistic aspects of methanol oxidation, J. Electroanal. Chem. 571 (2004) 273-282.

    7. [7] M.C. Li, W.Y. Wang, C.N. Ma, et al., Enhanced electrocatalytic activity of Pt nanoparticles modified with PPy-HEImTfa for electrooxidation of formaldehyde, J. Electroanal. Chem. 661 (2011) 317-321.[7] M.C. Li, W.Y. Wang, C.N. Ma, et al., Enhanced electrocatalytic activity of Pt nanoparticles modified with PPy-HEImTfa for electrooxidation of formaldehyde, J. Electroanal. Chem. 661 (2011) 317-321.

    8. [8] M.C. Santos, O.S. Bulhões, Electrogravimetric investigation of formaldehyde oxidation at Pt electrodes in acidic media, Electrochim. Acta 49 (2004) 1893-1901.[8] M.C. Santos, O.S. Bulhões, Electrogravimetric investigation of formaldehyde oxidation at Pt electrodes in acidic media, Electrochim. Acta 49 (2004) 1893-1901.

    9. [9] V. Selvaraj, N. Grace, M. Alagar, Electrocatalytic oxidation of formic acid and formaldehyde on nanoparticle decorated single walled carbon nanotubes, J. Colloid Interface Sci. 333 (2009) 254-262.[9] V. Selvaraj, N. Grace, M. Alagar, Electrocatalytic oxidation of formic acid and formaldehyde on nanoparticle decorated single walled carbon nanotubes, J. Colloid Interface Sci. 333 (2009) 254-262.

    10. [10] M.B. Brzezinska, Electrochemical oxidation of formaldehyde on gold and silver, Electrochim. Acta 30 (1985) 1193-1198.[10] M.B. Brzezinska, Electrochemical oxidation of formaldehyde on gold and silver, Electrochim. Acta 30 (1985) 1193-1198.

    11. [11] M.L. Avramov-Ivić, N.A. Anastasijević, R.R. Adžić, A study of oxidation of formaldehyde on Au(3 3 2) by rotating disc-ring method, Electrochim. Acta 35 (1990) 725-729.[11] M.L. Avramov-Ivić, N.A. Anastasijević, R.R. Adžić, A study of oxidation of formaldehyde on Au(3 3 2) by rotating disc-ring method, Electrochim. Acta 35 (1990) 725-729.

    12. [12] Z.Y. Zhou, N. Tian, Y.J. Chen, et al., In situ rapid-scan time-resolved microscope FTIR spectroelectrochemistry: study of the dynamic processes of methanol oxidation on a nanostructured Pt electrode, J. Electroanal. Chem. 573 (2004) 111-119.[12] Z.Y. Zhou, N. Tian, Y.J. Chen, et al., In situ rapid-scan time-resolved microscope FTIR spectroelectrochemistry: study of the dynamic processes of methanol oxidation on a nanostructured Pt electrode, J. Electroanal. Chem. 573 (2004) 111-119.

    13. [13] B.K. Jin, L. Li, J.L. Huang, et al., IR spectroelectrochemical cyclic voltabsorptometry and derivative cyclic voltabsorptometry, Anal. Chem. 81 (2009) 4476-4481.[13] B.K. Jin, L. Li, J.L. Huang, et al., IR spectroelectrochemical cyclic voltabsorptometry and derivative cyclic voltabsorptometry, Anal. Chem. 81 (2009) 4476-4481.

    14. [14] P. Liu, B.K. Jin, F.L. Cheng, A low temperature in situ infrared reflected absorbance spectroelectrochemical (LT-IRRAS) cell, J. Electroanal. Chem. 603 (2007) 269-274.[14] P. Liu, B.K. Jin, F.L. Cheng, A low temperature in situ infrared reflected absorbance spectroelectrochemical (LT-IRRAS) cell, J. Electroanal. Chem. 603 (2007) 269-274.

    15. [15] B.K. Jin, P. Liu, Y. Wang, et al., Rapid-scan time-resolved FT-IR spectroelectrochemistry studies on the electrochemical redox process, J. Phys. Chem. B 111 (2007) 1517-1522.[15] B.K. Jin, P. Liu, Y. Wang, et al., Rapid-scan time-resolved FT-IR spectroelectrochemistry studies on the electrochemical redox process, J. Phys. Chem. B 111 (2007) 1517-1522.

    16. [16] M. Avramov-Ivić, R.R. Adžić, A. Bewick, et al., An investigation of the oxidation of formaldehyde on noble metal electrodes in alkaline solutions by electrochemically modulated infrared spectroscopy (EMIRS), J. Electroanal. Chem. 240 (1988) 161-169.[16] M. Avramov-Ivić, R.R. Adžić, A. Bewick, et al., An investigation of the oxidation of formaldehyde on noble metal electrodes in alkaline solutions by electrochemically modulated infrared spectroscopy (EMIRS), J. Electroanal. Chem. 240 (1988) 161-169.

    17. [17] R. Ortiz, O.P. Marquez, J. Marquez, et al., Necessity of oxygenated surface species for the electrooxidation of methanol on iridium, J. Phys. Chem. 100 (1996) 8389-8396.[17] R. Ortiz, O.P. Marquez, J. Marquez, et al., Necessity of oxygenated surface species for the electrooxidation of methanol on iridium, J. Phys. Chem. 100 (1996) 8389-8396.

    18. [18] S. Haq, J.G. Love, H.E. Sanders, et al., Adsorption and decomposition of formic acid on Ni{1 1 0}, Surf. Sci. 325 (1995) 230-242.[18] S. Haq, J.G. Love, H.E. Sanders, et al., Adsorption and decomposition of formic acid on Ni{1 1 0}, Surf. Sci. 325 (1995) 230-242.

    19. [19] O. Manoušek, J. Volke, Anodic oxidation of aromatic aldehydes at mercury electrodes, J. Electroanal. Chem. 43 (1973) 365-375.[19] O. Manoušek, J. Volke, Anodic oxidation of aromatic aldehydes at mercury electrodes, J. Electroanal. Chem. 43 (1973) 365-375.

    20. [20] D. Barnes, P. Zuman, Polarographic reduction of aldehydes and ketones: XV. Hydration and acid-base equilibria accompanying reduction of aliphatic aldehydes, J. Electroanal. Chem. 46 (1973) 323-342.[20] D. Barnes, P. Zuman, Polarographic reduction of aldehydes and ketones: XV. Hydration and acid-base equilibria accompanying reduction of aliphatic aldehydes, J. Electroanal. Chem. 46 (1973) 323-342.

    21. [21] C. Zhang, D. Donadio, G. Galli, First-principle analysis of the IR stretching band of liquid water, J. Phys. Chem. Lett. 9 (2010) 1398-1402.[21] C. Zhang, D. Donadio, G. Galli, First-principle analysis of the IR stretching band of liquid water, J. Phys. Chem. Lett. 9 (2010) 1398-1402.

    22. [22] Y. Maréchal, The molecular structure of liquid water delivered by absorption spectroscopy in the whole IR region completed with thermodynamics data, J. Mol. Struct. 1004 (2011) 146-155.[22] Y. Maréchal, The molecular structure of liquid water delivered by absorption spectroscopy in the whole IR region completed with thermodynamics data, J. Mol. Struct. 1004 (2011) 146-155.

  • 加载中
计量
  • PDF下载量:  483
  • 文章访问数:  3123
  • HTML全文浏览量:  118
文章相关
  • 收稿日期:  2012-11-07
  • 网络出版日期:  2012-12-31
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章