Citation: LIU Guang-bo, ZHANG Qing-de, HAN Yi-zhuo, TSUBAKI Noritatsu, TAN Yi-sheng. Low-temperature oxidation of dimethyl ether to methyl formate with high selectivity over MoO3-SnO2 catalysts[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(2): 223-227. shu

Low-temperature oxidation of dimethyl ether to methyl formate with high selectivity over MoO3-SnO2 catalysts

  • Corresponding author: TAN Yi-sheng, 
  • Received Date: 14 October 2012
    Available Online: 24 December 2012

    Fund Project: 国家自然科学基金(20903114, 20773154) (20903114, 20773154) 山西省自然科学基金(2010011015-1) (2010011015-1) 科技部自主研究课题(2010BWZ001) (2010BWZ001) 中国科学院山西煤炭化学研究所青年人才基金(2011SQNRC15)。 (2011SQNRC15)

  • Low-temperature oxidation of dimethyl ether (DME) to methyl formate (MF) with high selectivity was realized in a continuous flow fixed-bed reactor over the multifunctional MoO3-SnO2 catalysts designed and prepared intentionally. The effect of the preparation methods including mechanical mixing, co-precipitation and co-precipitation-impregnation on the catalyst activity was investigated. The results showed that the selectivity to MF reaches 94.1% at 160℃ over the catalyst prepared by co-precipitation-impregnation, with DME conversion of 33.9% and absence of COx in the products. The results of NH3-TPD, CO2-TPD and H2-TPR characterizations indicated that the catalysts prepared by various methods are also obviously different in the surface acidic, alkaline and redox properties. The results of Raman, XRD and TEM revealed that MoO3 structure and particle sizes have a significant influence on the catalyst activity; small particle size and oligomeric MoO3 may be responsible for the high activity of the MoO3-SnO2 catalysts from co-precipitation-impregnation in the selective oxidation of DME to MF at low temperature.
  • 加载中
    1. [1]

      [1] WANG D, HAN Y , TAN Y , TSUBAKI N. Effect of H2O on Cu-based catalyst in one-step slurry phase dimethyl ether synthesis[J]. Fuel Process Technol, 2009, 90(3): 446-451.

    2. [2]

      [2] SAN X , ZHANG Y, SHEN W , TSUBAKI N. New synthesis method of ethanol from dimethyl ether with a synergic effect between zeolite and metallic catalyst[J]. Energy Fuels, 2009, 23(5): 2843-2844.

    3. [3]

      [3] LIU G , ZHANG Q , HAN Y , TAN Y . Direct oxidation of dimethyl ether to ethanol over WO3/HZSM-5 catalysts[J]. Catal Commun, 2012, 26: 173-177.

    4. [4]

      [4] HIROSHI Y, KENJI A, ATSUSHI M, KAORU F. Oxidation dimerization of dimethyl ether with solid catalysts[J]. Appl Catal, 1989, 53(1): L5-L9.

    5. [5]

      [5] ZHANG Q , TAN Y , YANG C , HAN Y . MnCl2 modified H4SiW12O40/SiO2 catalysts for catalytic oxidation of dimethyl ether to dimethoxymethane[J]. J Mol Catal A, 2007, 236(1/2): 149-155.

    6. [6]

      [6] LIU H , CHEUNG P, IGLESIA E. Structure and support effects on the selective oxidation of dimethyl ether to formaldehyde catalyzed by MoOx domains[J]. J Catal, 2003, 217(1): 222-232.

    7. [7]

      [7] 黄秀敏,徐奕德,申文杰. 负载型MoOx和VOx催化剂上二甲醚选择氧化制甲醛的反应[J].催化学报,2004, 25(4): 267-271. HUANG Xiu-min, XU Yi-de, SHEN Wen-jie. Selective oxidation of dimethyl ether to formaldehyde over supported MoOx and VOx catalysts[J]. Chinese Journal of Catalysis, 2004, 25(4): 267-271.

    8. [8]

      [8] AI M. Dimerization of formaldehyde to methyl formate on SnO2-WO3 catalysts[J]. Appl Catal, 1984, 9(3): 371-377.

    9. [9]

      [9] GONCALVES F, MEDEITOS P, EON J, APPEL L. Active sites for ethanol oxidation over SnO2-supported molybdenum oxides[J]. Appl Catal A, 2000, 193(1/2): 195-202.

    10. [10]

      [10] CHEUNG P, LIU H , IGLESIA E. Kinetics and mechanism of dimethyl ether oxidation to formaldehyde on supported molybdenum oxides domains[J]. J Phys Chem B, 2004, 108(48): 18650-18658.

    11. [11]

      [11] HERRMANN J M, VILLAIN F, APPEL L. Characterization of Mo-Sn-O system by means of Raman spectroscopy and electrical conductivity measurements[J]. Appl Catal A, 2003, 240(1/2): 177-182.

  • 加载中
    1. [1]

      Zhuoyan LvYangming DingLeilei KangLin LiXiao Yan LiuAiqin WangTao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-0. doi: 10.3866/PKU.WHXB202408015

    2. [2]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    3. [3]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    4. [4]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    5. [5]

      Haiqiang Lin Weizheng Weng Jingdong Lin Mingshu Chen Xueming Fang Lefu Yang . Diverse Variables-Driven Catalytic Optimization: Experimental Enhancement and Instructional Design for Selective Methane Oxidation on Supported Nickel-based Catalysts. University Chemistry, 2025, 40(11): 327-336. doi: 10.12461/PKU.DXHX202505106

    6. [6]

      Jiayi Yang Jianxiu Hao Huacong Zhou Quansheng Liu . “Gorgeous Transformation” of Carbon Dioxide into Cyclic Carbonates: Catalyst Types and Roles. University Chemistry, 2026, 41(2): 178-189. doi: 10.12461/PKU.DXHX202502105

    7. [7]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    8. [8]

      Lifang HEWenjie TANGYaoze LUOMingsheng LIANGJianxin TANGYuxuan WUFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two dialkyltin complexes constructed based on 2, 2′-bipyridin-6, 6′-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1601-1609. doi: 10.11862/CJIC.20250012

    9. [9]

      Xiaorui ChenXuan LuoTongming SuXinling XieLiuyun ChenYuejing BinZuzeng QinHongbing Ji . Ga-doped Cu/γ-Al2O3 bifunctional interface sites promote the direct hydrogenation of CO2 to DME. Acta Physico-Chimica Sinica, 2025, 41(10): 100126-0. doi: 10.1016/j.actphy.2025.100126

    10. [10]

      Xiaolong Li Shiqi Zhong Xiangfeng Wei Zhiqiang Liu Pan Zhan Jiehua Liu . Carbon Dioxide: From the Past to the Future. University Chemistry, 2026, 41(2): 242-247. doi: 10.12461/PKU.DXHX202503013

    11. [11]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    12. [12]

      Shiyi ChenJialong FuJianping QiuGuoju ChangShiyou Hao . Waste medical mask-derived carbon quantum dots enhance the photocatalytic degradation of polyethylene terephthalate (PET) over BiOBr/g-C3N4 S-scheme heterojunction. Acta Physico-Chimica Sinica, 2026, 42(1): 100135-0. doi: 10.1016/j.actphy.2025.100135

    13. [13]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    14. [14]

      Xinyu XuJiale LuBo SuJiayi ChenXiong ChenSibo Wang . Steering charge dynamics and surface reactivity for photocatalytic selective methane oxidation to ethane over Au/Ti-CeO2. Acta Physico-Chimica Sinica, 2025, 41(11): 100153-0. doi: 10.1016/j.actphy.2025.100153

    15. [15]

      Dingwen CHENSiheng YANGHaiyan FUHua CHENXueli ZHENGWeichao XUEJiaqi XURuixiang LI . NiOOH-mediated synthesis of gold nanoaggregates for electrocatalytic performance for selective oxidation of glycerol to glycolate. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2317-2326. doi: 10.11862/CJIC.20250053

    16. [16]

      Ze LuoYukun ZhuYadan LuoGuangmin RenYonghong WangHua Tang . Photocatalytic selective oxidation of 5-hydroxymethylfurfural coupled with H2 evolution over In2O3/ZnIn2S4 S-scheme heterojunction. Acta Physico-Chimica Sinica, 2026, 42(3): 100166-0. doi: 10.1016/j.actphy.2025.100166

    17. [17]

      Zhen LiSujuan ZhangZhongliao WangJinfeng ZhangGaoli ChenShifu Chen . Rational design of S-scheme CdS/MnO2 heterojunctions for high-value photothermal synergistic catalytic oxidation of toluene. Acta Physico-Chimica Sinica, 2026, 42(4): 100179-0. doi: 10.1016/j.actphy.2025.100179

    18. [18]

      Yucai Zhang Jun Jiang . Electrochemical Carbon Dioxide Reduction to Ethylene. University Chemistry, 2026, 41(2): 190-196. doi: 10.12461/PKU.DXHX202503006

    19. [19]

      Ruifeng CHENChao XUJianting JIANGTianshe YANG . Gold nanorod/zinc oxide/mesoporous silica nanoplatform: A triple-modal platform for synergistic anticancer therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2272-2282. doi: 10.11862/CJIC.20250117

    20. [20]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

Metrics
  • PDF Downloads(440)
  • Abstract views(1655)
  • HTML views(153)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return