Citation:
LIANG Yan, YU Shi-Feng, CHEN Wei-Jun, CAO Wei. Fragmentation Pathway of Kaempferol in Electrospray[J]. Chinese Journal of Applied Chemistry,
;2009, 26(10): 1250-1252.
-
The electrospray ionization(ESI) mass spectrometry was used to study the fragmentation pathway of kaempferol. The fragmentation pathway of kaempferol was also theoretically studied by means of Density Functional Theory(DFT). The structures of all the fragment ions and the corresponding bond dissociation energies(BDEs) were analyzed by virtue of DFT at ROB3LYP/6-311 ++ G(2d,2p)/B3LYP/6-31G(d) levels. Based on the comparison with the calculated BDEs,the structure and the origin of each fragment ion were determined,and then the whole fragmentation pathway was deduced. The calculated results show that the fragment ions at m/z 284.7,256.7,228.7,210.7,184.8,168.7 and 150.7 of kaempferol mainly formed by the cleavage of the C ring. And the BDE of fragment ion at m/z 210.7 is the lowest,while the BDE of fragment ion at m/z 150.7 is the highest,suggesting that the former is evidently easier to form from the parent ion,and the latter is comparatively more difficult to form.
-
Keywords:
- kaempferol,
- ESIMS,
- fragmentation pathway,
- BDE,
- quantum chemistry
-
-
-
-
[1]
Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060
-
[2]
Dongju Zhang , Rongxiu Zhu . Construction of Ideological and Political Education in Quantum Chemistry Course: Several Teaching Cases to Reveal the Universal Connection of Things. University Chemistry, 2024, 39(7): 272-277. doi: 10.3866/PKU.DXHX202311032
-
[3]
Guoxian Zhu , Jing Chen , Rongkai Pan . Enhancing the Teaching Quality of Atomic Structure: Insights and Strategies. University Chemistry, 2024, 39(3): 376-383. doi: 10.3866/PKU.DXHX202305027
-
[4]
Yanan Jiang , Yuchen Ma . Brief Discussion on the Electronic Exchange Interaction in Quantum Chemistry Computations. University Chemistry, 2025, 40(3): 10-15. doi: 10.12461/PKU.DXHX202402058
-
[5]
Yaqin Zheng , Lian Zhuo , Meng Li , Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119
-
[6]
Jiabo Huang , Quanxin Li , Zhongyan Cao , Li Dang , Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172
-
[7]
Huiying Xu , Minghui Liang , Zhi Zhou , Hui Gao , Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011
-
[8]
Xueli Mu , Lingli Han , Tao Liu . Quantum Chemical Calculation Study on the E2 Elimination Reaction of Halohydrocarbon: Designing a Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 68-75. doi: 10.12461/PKU.DXHX202404057
-
[9]
Wenkai Chen , Yunjia Shen , Xiangmeng Kong , Yanli Zeng . Quantum Chemistry Calculation of Key Physical Quantity in Circularly Polarized Luminescence: Introducing an Exploratory Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 83-91. doi: 10.12461/PKU.DXHX202405018
-
[10]
Yun Chen , Daijie Deng , Li Xu , Xingwang Zhu , Henan Li , Chengming Sun . Covalent bond modulation of charge transfer for sensitive heavy metal ion analysis in a self-powered electrochemical sensing platform. Acta Physico-Chimica Sinica, 2026, 42(1): 100144-0. doi: 10.1016/j.actphy.2025.100144
-
[11]
Lu Zhuoran , Li Shengkai , Lu Yuxuan , Wang Shuangyin , Zou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003
-
[12]
Shunping WANG , Chuandong GE , Shuguang QU , Tianduo LI , Shaomin WANG , Qingyuan YANG . Synthesis of a fluorescent probe based on urea-based coordination and Si—O bond cleavage for F- and Cr(Ⅵ) detection. Chinese Journal of Inorganic Chemistry, 2026, 42(2): 297-308. doi: 10.11862/CJIC.20250214
-
[13]
Leqin He , Yunhan Qin , Jing Wang , Yukuan Zhang , Zhengping Dong , Shuai Han . Tea’s Colorful Chemistry: A Popular Science Experiment Featuring Tea Polyphenols. University Chemistry, 2026, 41(2): 255-262. doi: 10.12461/PKU.DXHX202502068
-
[14]
Tong Wang , Liangyu Hu , Shiqi Chen , Xinqiang Fu , Rui Wang , Kun Li , Shuangyan Huan . Determination of Benzenediol Isomers in Cosmetics Using High-Performance Liquid Chromatography Empowered by “Mathematical Separation”. University Chemistry, 2026, 41(1): 9-19. doi: 10.12461/PKU.DXHX202503128
-
[15]
Cuicui Yang , Bo Shang , Xiaohua Chen , Weiquan Tian . Understanding the Wave-Particle Duality and Quantization of Confined Particles Starting from Classic Mechanics. University Chemistry, 2025, 40(3): 408-414. doi: 10.12461/PKU.DXHX202407066
-
[16]
Rui Li , Jiayu Zhang , Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051
-
[17]
Xinran Zhang , Siqi Liu , Yichi Chen , Qingli Zou , Qinghong Xu , Yaqin Huang . From Protein to Energy Storage Materials: Edible Gelatin Jelly Electrolyte. University Chemistry, 2025, 40(7): 255-266. doi: 10.12461/PKU.DXHX202408104
-
[18]
Chongjing Liu , Yujian Xia , Pengjun Zhang , Shiqiang Wei , Dengfeng Cao , Beibei Sheng , Yongheng Chu , Shuangming Chen , Li Song , Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-0. doi: 10.3866/PKU.WHXB202309036
-
[19]
Jiantuo Chen , Fanpeng Shang , Mingxin Zheng . Analysis and Expansion of Metal-Metal Multiple Bond Related Questions in the 38th Chemistry Olympiad (Preliminary). University Chemistry, 2026, 41(2): 435-438. doi: 10.12461/PKU.DXHX202502043
-
[20]
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
-
[1]
Metrics
- PDF Downloads(2)
- Abstract views(1254)
- HTML views(229)
Login In
DownLoad: