Citation: WANG Miao, SHEN Xin-Lin, TANG Yan-Feng, JIANG Guo-Qing, SHI Yu-Jun. Glycine-Assisted Hydrothermal Synthesis of CaF2∶Ln3+(Ln=Eu, Tb) Microcrystals with Different Morphologies[J]. Chinese Journal of Inorganic Chemistry, ;2012, 28(12): 2660-2666. shu

Glycine-Assisted Hydrothermal Synthesis of CaF2∶Ln3+(Ln=Eu, Tb) Microcrystals with Different Morphologies

  • Corresponding author: SHI Yu-Jun, 
  • Received Date: 27 March 2012
    Available Online: 25 June 2012

    Fund Project: 国家自然科学基金(No.21173122,20906052) (No.21173122,20906052)江苏省自然科学基金(No.BK2010281) (No.BK2010281)南通市应用研究计划项目(BK2011035) (BK2011035)

  • By employing KBF4 or K2SiF6 as fluoride source, a facile glycine-assisted hydrothermal route has been developed to synthesize a series of well-dispersed CaF2∶Ln3+(Ln=Eu, Tb) microcrystals with a variety of morphologies, such as cubes, hollow polyhedra and hollow spheres. X-ray diffraction (XRD), Fourier transform IR (FTIR), scanning electron microscopy (SEM) and photoluminescence (PL) were used to characterize the purity, crystalline phase, morphologies and the photoluminescence properties of the samples. The XRD results show that all the as-prepared CaF2 have cubic structure and high crystallinity. The SEM results indicate that, in the presence of glycine, the as-prepared CaF2 microcrystals present morphologies of highly dispersed hollow polyhedra and hollow spheres obtained from KBF4 and K2SiF6, respectively. Meanwhile, the CaF2 hollow spheres were assembled from numerous nanocubes. In the synthetic process, glycine, fluoride source and reaction time play crucial role in confining the growth of the different morphological CaF2 microcrystals. The growth mechanism for products with diverse microstructures have been proposed based on the experimental results.
  • 加载中
    1. [1]

      [1] Nakajima T, Zemva B, Tressaud A. Advanced Inorganic Fluorides. Amsterdam: Elsevier, 2000.

    2. [2]

      [2] Kinsman B E, Hanney R. Adv. Mater. Opt. Electron., 1995,5:109-115

    3. [3]

      [3] Moon H J, Kim K N, Kim K M, et al. J. Biomed. Mater. Res. Part A, 2005,74A:497-502

    4. [4]

      [4] Feldmann C, Roming M, Trampert K. Small, 2006,2:1248-1250

    5. [5]

      [5] Sun X M, Li Y D. Chem. Commun., 2003:1768-1769

    6. [6]

      [6] Zhang C M, Li C X, Peng C, et al. Chem. Eur. J., 2010,16: 5672-5680

    7. [7]

      [7] Zhang X M, Quan Z W, Yang J, et al. Nanotechnology, 2008,19:075603(8pp)

    8. [8]

      [8] Hou S Y, Zou Y C, Liu X C, et al. CrystEngComm, 2011,13:835-840

    9. [9]

      [9] Quan Z W, Yang D M, Yang P P, et al. Inorg. Chem., 2008,47:9509-9517

    10. [10]

      [10] Du Y P, Sun X, Zhang Y W, et al. Cryst. Growth Des., 2009,9:2013-2019

    11. [11]

      [11] Mao Y B, Zhang F, Wong S S. Adv. Mater., 2006,18:1895-1899

    12. [12]

      [12] Wang W S, Zhen L, Xu C Y, et al. ACS Appl. Mater. Interfaces, 2009,1:780-788

    13. [13]

      [13] Guo F Q, Zhang Z F, Li H F, et al. Chem. Commun., 2010, 46:8237-8239

    14. [14]

      [14] WANG Miao(王淼), CHEN Ting-Ting(陈婷婷), TANG Yan-Feng(汤艳峰), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2012,28:185-190

    15. [15]

      [15] Yang X F, Dong X T, Wang J X, et al. J. Alloy Compd., 2009,487:298-303

    16. [16]

      [16] Yang X F, Dong X T, Wang J X, et al. Mater. Lett., 2009, 63:629-631

    17. [17]

      [17] Chen H M, Zhao Y Q, He J H, et al. Analytica Chimica Acta, 2010,659:266-273

    18. [18]

      [18] Wang M, Shi Y J, Jiang G Q. Mater. Res. Bull., 2012,47: 18-23

    19. [19]

      [19] CHEN Guang-De(陈广德), XU Zhen-Mei(徐贞梅). Fine Chem.(Jingxi Huagong), 2002,19:701-702,726

    20. [20]

      [20] ZHANG Da-Fei(张大飞), ZHAO Ri-Getu(照日格图), LIU Jian-Hua(刘建华), et al. Chinese J. Spect. Lab.(Guangpu Shiyanshi), 2006,23:91-95

    21. [21]

      [21] CAO Xiao-Feng(曹霄峰), ZHANG Lei(张雷), MA Ying-Li (马英丽),et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2010,26:787-792

    22. [22]

      [22] Qian H S, Yu S H, Gong J Y, et al. Cryst. Growth Des. 2005,5:935-939

    23. [23]

      [23] WANG Miao(王淼), SHI Yu-Jun(石玉军), JIANG Guo-Qing (江国庆). Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2009,25:1785-1790

    24. [24]

      [24] Wei Z G, Sun L D, Jiang X C, et al. Chem. Mater., 2003,15: 3011-3017

    25. [25]

      [25] Jiang X C, Sun L D, Yan C H. J. Phys. Chem. B, 2004,108: 3387-3390

  • 加载中
    1. [1]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    2. [2]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    3. [3]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    4. [4]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    5. [5]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    6. [6]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    7. [7]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    8. [8]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    9. [9]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    10. [10]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    11. [11]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    12. [12]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    13. [13]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    14. [14]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    15. [15]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    16. [16]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    17. [17]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    18. [18]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    19. [19]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    20. [20]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

Metrics
  • PDF Downloads(0)
  • Abstract views(267)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return